Name: | Description: | Size: | Format: | |
---|---|---|---|---|
2.36 MB | Adobe PDF |
Advisor(s)
Abstract(s)
The first step in identifying fruits on trees is to develop garden robots for different purposes
such as fruit harvesting and spatial specific spraying. Due to the natural conditions of the fruit
orchards and the unevenness of the various objects throughout it, usage of the controlled conditions
is very difficult. As a result, these operations should be performed in natural conditions, both
in light and in the background. Due to the dependency of other garden robot operations on the
fruit identification stage, this step must be performed precisely. Therefore, the purpose of this
paper was to design an identification algorithm in orchard conditions using a combination of video
processing and majority voting based on different hybrid artificial neural networks. The different
steps of designing this algorithm were: (1) Recording video of different plum orchards at different
light intensities; (2) converting the videos produced into its frames; (3) extracting different color
properties from pixels; (4) selecting effective properties from color extraction properties using
hybrid artificial neural network-harmony search (ANN-HS); and (5) classification using majority
voting based on three classifiers of artificial neural network-bees algorithm (ANN-BA), artificial
neural network-biogeography-based optimization (ANN-BBO), and artificial neural network-firefly
algorithm (ANN-FA). Most effective features selected by the hybrid ANN-HS consisted of the third
channel in hue saturation lightness (HSL) color space, the second channel in lightness chroma hue
(LCH) color space, the first channel in L*a*b* color space, and the first channel in hue saturation
intensity (HSI). The results showed that the accuracy of the majority voting method in the best execution
and in 500 executions was 98.01% and 97.20%, respectively. Based on different performance evaluation
criteria of the classifiers, it was found that the majority voting method had a higher performance.
Description
Keywords
Artificial intelligence Precision agriculture Agricultural robot Optimization algorithm Online operation Segmentation
Citation
Publisher
MDPI