Publication
Linear versus non-linear non-invasive temperature predictors in a homogeneous medium subjected to physiotherapeutic ultrasound
dc.contributor.author | Teixeira, C. A. | |
dc.contributor.author | Ruano, M. Graça | |
dc.contributor.author | Pereira, W. C. A. | |
dc.contributor.author | Ruano, Antonio | |
dc.contributor.author | Negreira, C. | |
dc.date.accessioned | 2013-02-06T15:36:59Z | |
dc.date.available | 2013-02-06T15:36:59Z | |
dc.date.issued | 2006 | |
dc.date.updated | 2013-01-26T18:46:12Z | |
dc.description.abstract | The lack of accurate time-spatial temperature estimators/predictors conditions the safe application of thermal therapies, such as hyperthermia. In this paper, a comparison between a linear and a non-linear class of models for non-invasive temperature prediction in a homogeneous medium, subjected to ultrasound at physiotherapeutic levels is presented. The linear models used were autoregressive with exogenous inputs (ARX) and the non-linear models were radial basis functions neural networks (RBFNN). In order to create and validate the models, an experiment was build to extract in vitro ultrasound RF-lines, as well as its correspondent temperature values. Then, features were extracted from the measured RF-lines and the models were trained and validated. For both the models, the best-fitted structures were selected using the multi-objective genetic algorithm (MOGA), given the enormous number of possible structures. The best RBFNN model presented a maximum absolute predictive error in the validation set five times less than the value presented by the best ARX model. In this work, the best RBFNN reached a maximum absolute error of 0.42 ºC, which is bellow the value pointed as a borderline between an appropriate and an undesired temperature estimator, which is 0.5 ºC. The average error was one order of magnitude less in the RBFNN case, and a less biased estimation was met. In addition, the best RBFNN needed less environmental information (inputs), given the capacity to non-linearly relate the information. The results obtained are encouraging, considering that coherent results should be obtained in a time-spatial modelling schema using RBFNN models. | por |
dc.identifier.citation | Teixeira, C. A.; Ruano, M. G.; Pereira, W. C. A.; Ruano, A. E.; Negreira, C. Linear versus non-linear non-invasive temperature predictors in a homogeneous medium subjected to physiotherapeutic ultrasound, Revista Brasileira de Engenharia Biomédica, 22, 2, 131-141, 2006. | por |
dc.identifier.issn | 1517-3151 | |
dc.identifier.other | AUT: MRU00118; ARU00698; | |
dc.identifier.uri | http://hdl.handle.net/10400.1/2244 | |
dc.language.iso | eng | por |
dc.peerreviewed | yes | por |
dc.subject | Non-invasive temperature estimation | por |
dc.subject | Physiotherapeutic ultrasound | por |
dc.subject | Radial basis functions neural networks | por |
dc.subject | Multi-objective genetic algorithms | por |
dc.title | Linear versus non-linear non-invasive temperature predictors in a homogeneous medium subjected to physiotherapeutic ultrasound | por |
dc.type | journal article | |
dspace.entity.type | Publication | |
oaire.citation.endPage | 141 | por |
oaire.citation.issue | 2 | por |
oaire.citation.startPage | 131 | por |
oaire.citation.title | Revista Brasileira de Engenharia Biomédica | por |
oaire.citation.volume | 22 | por |
person.familyName | Teixeira | |
person.familyName | Ruano | |
person.familyName | Pereira | |
person.familyName | Ruano | |
person.givenName | César | |
person.givenName | Maria | |
person.givenName | Wagner | |
person.givenName | Antonio | |
person.identifier.ciencia-id | 9811-A0DD-D5A5 | |
person.identifier.orcid | 0000-0001-9396-1211 | |
person.identifier.orcid | 0000-0002-0014-9257 | |
person.identifier.orcid | 0000-0001-5880-3242 | |
person.identifier.orcid | 0000-0002-6308-8666 | |
person.identifier.rid | A-3477-2012 | |
person.identifier.rid | A-8321-2011 | |
person.identifier.rid | B-4135-2008 | |
person.identifier.scopus-author-id | 55826531700 | |
person.identifier.scopus-author-id | 7004483805 | |
person.identifier.scopus-author-id | 35581987400 | |
person.identifier.scopus-author-id | 7004284159 | |
rcaap.rights | openAccess | por |
rcaap.type | article | por |
relation.isAuthorOfPublication | 29e9844d-9355-4f2a-badf-9e7ad3117cdb | |
relation.isAuthorOfPublication | 61fc8492-d73f-46ca-a3a3-4cd762a784e6 | |
relation.isAuthorOfPublication | 5f0824cf-c471-4f03-8134-8003affbabe3 | |
relation.isAuthorOfPublication | 13813664-b68b-40aa-97a9-91481a31ebf2 | |
relation.isAuthorOfPublication.latestForDiscovery | 61fc8492-d73f-46ca-a3a3-4cd762a784e6 |