Repository logo
 
Loading...
Thumbnail Image
Publication

Organocatalyzed oxidation of benzyl alcohols by a tetrazole-amino-saccharin: A combined experimental and theoretical (DFT) study

Use this identifier to reference this record.
Name:Description:Size:Format: 
1-s2.0-S2468823117304819-main.pdf2.18 MBAdobe PDF Download

Advisor(s)

Abstract(s)

A new catalytic system for the anaerobic oxidation of benzyl alcohols using a tetrazole-amino-saccharin organocatalyst has been established. In a solvent-free and microwave assisted process comprising aqueous tert-butyl hydroperoxide (TBHP) as oxidant, a variety of benzyl alcohols has been efficiently converted to aldehydes under mild conditions. Most reactions are complete within 30 min and the catalyst exhibits varied functional group compatibility. A catalytic cycle for the oxidation of the alcohols promoted by the tetrazole-amino-saccharin derivative is outlined involving radical species. DFT calculations performed for the oxidation of benzyl alcohol with and without organocatalyst show that the rate limiting step of the whole reaction is the cleavage of the O-O bond in TBHP with the subsequent hydrogen abstraction from the alcohol. The tetrazole-amino-saccharin organocatalyst assists the H-abstraction from benzyl alcohol by the bound HO center dot radical. The simplicity, selectivity and softness of reaction conditions of the studied organocatalytic protocol suggest a great potential for extensive use in synthetic chemistry. (C) 2017 Elsevier B.V. All rights reserved.

Description

Keywords

Shock-tube Peroxidative oxidation Copper(Ii) complexes Effective catalysts Solvent Oh Chemistry Water Hydroxylation Derivatives

Citation

Research Projects

Research ProjectShow more

Organizational Units

Journal Issue