Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.1/1018
Título: Computability, noncomputability and undecidability of maximal intervals of IVPs
Autor: Graça, Daniel
Zhong, Ning
Buescu, Jorge
Data: 2009
Resumo: Let (α, β) ⊆ R denote the maximal interval of existence of solution for the initial-value problem dx dt = f(t, x) x(t0) = x0, where E is an open subset of Rm+1, f is continuous in E and (t0, x0) ∈ E. We show that, under the natural definition of computability from the point of view of applications, there exist initial-value problems with computable f and (t0, x0) whose maximal interval of existence (α, β) is noncomputable. The fact that f may be taken to be analytic shows that this is not a lack of regularity phenomenon. Moreover, we get upper bounds for the “degree of noncomputability” by showing that (α, β) is r.e. (recursively enumerable) open under very mild hypotheses. We also show that the problem of determining whether the maximal interval is bounded or unbounded is in general undecidable.
Peer review: yes
URI: http://hdl.handle.net/10400.1/1018
Versão do Editor: http://www.ams.org/tran/2009-361-06/S0002-9947-09-04929-0/home.html
Aparece nas colecções:FCT2-Artigos (em revistas ou actas indexadas)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
06-GZB-noncompode.pdf213,5 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.