Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.1/2234
Registo completo
Campo DCValorIdioma
dc.contributor.authorRuano, A. E.-
dc.contributor.authorCrispim, E. M.-
dc.contributor.authorFrazão, P. M.-
dc.date.accessioned2013-02-06T14:26:01Z-
dc.date.available2013-02-06T14:26:01Z-
dc.date.issued2009-
dc.identifier.citationRuano, A. E.; Crispim, E. M.; Frazão, P. M. MOGA Design of Neural Network Predictors of Inside Temperature in Public Buildings, In Soft Computing Based Modeling in Intelligent Systems, 35-61, ISBN: 978-3-642-00447-6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.por
dc.identifier.isbn978-3-642-00447-6-
dc.identifier.otherAUT: ARU00698;-
dc.identifier.urihttp://hdl.handle.net/10400.1/2234-
dc.description.abstractThe use of artificial neural networks in various applications related with energy management in buildings has been increasing significantly over the recent years. In this chapter, the design of inside air temperature predictive neural network models, to be used for predictive thermal comfort control, is discussed. The design is based on the joint use of multi-objective genetic (MOGA) algorithms, for selecting the network structure and the network inputs, and a derivative algorithm, for parameter estimation. Climate and environmental data from a secondary school located in the south of Portugal, collected by a remote data acquisition system, are used to generate the models. By using a sliding window adaptive methodology, the good results obtained off-line are extended throughout the whole year.por
dc.language.isoengpor
dc.publisherSpringer Berlin Heidelbergpor
dc.rightsrestrictedAccesspor
dc.titleMOGA design of neural network predictors of inside temperature in public buildingspor
dc.typearticlepor
dc.date.updated2013-01-26T17:30:53Z-
degois.publication.firstPage35por
degois.publication.lastPage61por
degois.publication.titleSoft Computing Based Modeling in Intelligent Systemspor
dc.peerreviewedyespor
Aparece nas colecções:FCT2-Artigos (em revistas ou actas indexadas)

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Ruano_Chapter_SCBMIS.pdf794,25 kBAdobe PDFVer/Abrir    Acesso Restrito. Solicitar cópia ao autor!


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.