Percorrer por autor "Berry, Neil"
A mostrar 1 - 3 de 3
Resultados por página
Opções de ordenação
- Artemisinin-polypyrrole conjugates: synthesis, DNA binding studies and preliminary antiproliferative evaluationPublication . La Pensée, Louise; Sabbani, Sunil; Sharma, Raman; Bhamra, Inder; Shore, Emma; Chadwick, Amy E.; Berry, Neil; Firman, J.; Araujo, Nuna C. P.; Cabral, Lília; Cristiano, Maria Lurdes Santos; Bateman, Cerys; Janneh, Omar; Gavrila, Adelina; Wu, Yi Hang; Hussain, Afthab; Ward, Stephen A.; Stocks, Paul A.; Cosstick, Rick; O'Neill, Paul M.Artemisinin-based combination therapies (ACTs) are currently the recommended treatment for uncomplicated and severe cases of malaria.[1] Additionally, artemisinins, as well as a number of other sesquiterpene lactones (SLs), are currently in phase I–II clinical trials against breast, colorectal and nonsmall-cell lung cancers.[2] As outlined by the iron-dependent activation hypothesis,[3] the activity of artemisinin (ART) is dependent on the endoperoxide bridge.[4] The peroxide is cleaved by endogenous sources of FeII to generate highly reactive carbon-centred radicals (CCRs), which are believed to react with critical cellular targets.[3] ART demonstrates selectivity towards rapidly proliferating cancer cell lines that possess a high intracellular iron content required to sustain their characteristic high rates of multiplication.[5] Iron activation links this particular potency of ART towards rapidly proliferating cancer cell lines; differentiation between healthy and cancerous cells by variation of iron concentration provides a strategy for selective cytotoxicity by ART and its derivatives.[4] The mechanism by which ART exerts its cytotoxic activity still remains elusive. ART acts by disruption of proliferation,[6, 7] oxidative stress,[8] anti-angiogenesis,[9] NF-kB signalling,[10] apoptosis[4] and interfering with iron uptake and metabolism.[6] ART also induces DNA breakage,[11] and it has been reported that artesunate-mediated DNA damage contributes to its therapeutic efficacy.
- Design and synthesis of novel 2-pyridone peptidomimetic falcipain 2/3 inhibitorsPublication . Verissimo, Edite; Berry, Neil; Gibbons, Peter D.; Cristiano, Maria Lurdes Santos; Rosenthal, Philip J.; Gut, Jiri; Ward, Stephen A.; O'Neill, Paul M.The structure-based design, chemical synthesis and in vitro activity evaluation of various falcipain inhibitors derived from 2-pyridone are reported. These compounds contain a peptidomimetic binding determinant and a Michael acceptor terminal moiety capable of deactivating the cysteine protease active site.
- Endoperoxide carbonyl falcipain 2/3 inhibitor hybrids: toward combination chemotherapy of malaria through a single chemical entityPublication . Gibbons, Peter D.; Verissimo, Edite; Araujo, Nuna C. P.; Barton, Victoria; Nixon, Gemma L.; Amewu, Richard K.; Chadwick, J.; Stocks, Paul A.; Biagini, Giancarlo A.; Srivastava, Abhishek; Rosenthal, Philip J.; Gut, Jiri; Guedes, Rita C.; Moreira, Rui; Sharma, Raman; Berry, Neil; Cristiano, Maria Lurdes Santos; Shone, Alison E.; Ward, Stephen A.; O'Neill, Paul M.We extend our approach of combination chemotherapy through a single prodrug entity (O’Neill et al. Angew. Chem., Int. Ed. 2004, 43, 4193) by using a 1,2,4-trioxolane as a protease inhibitor carbonylmasking group. These molecules are designed to target the malaria parasite through two independent mechanisms of action: iron(II) decomposition releases the carbonyl protease inhibitor and potentially cytotoxic C-radical species in tandem. Using a proposed target “heme”, we also demonstrate heme alkylation/carbonyl inhibitor release and quantitatively measure endoperoxide turnover in parasitized red blood cells.
