Browsing by Author "Colen, Rita"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Dietary lipid quality regulates bone composition and metabolism in gilthead seabream (Sparus aurata) juvenilesPublication . Dias, J.; Rodrigues, V.; Colen, Rita; Rosa, Joana; Viegas, Michael; Cardeira Da Silva, João; Cancela, Leonor; Gavaia, Paulo J.; Laizé, VincentReplacement of significant amounts of marine fish oils by vegetable oils is a major trend in the aquaculture feed industry. However, knowledge on the mechanisms underlying the nutritional regulation of bone metabolism is extremely scarce in fish. We speculate that changes in the dietary ratio of fatty acids may modulate tissue eicosanoids production and affect bone formation in fastgrowing gilthead seabream, an important fish species for aquaculture in the Mediterranean region.
- Dietary tools to modulate glycogen storage in gilthead seabream muscle: glycerol supplementationPublication . Silva, Tomé S.; Matos, Elisabete; Cordeiro, O.; Colen, Rita; Wulff, Tune; Sampaio, Eduardo; Sousa, Vera; Valente, L. M. P.; Gonçalves, Amparo; Silva, Joana M. G.; Bandarra, N.; Nunes, Maria Leonor; Dinis, Maria Teresa; Dias, J.; Jessen, Flemming; Rodrigues, PedroThe quality and shelf life of fish meat products depend on the skeletal muscle’s energetic state at slaughter, as meat decomposition processes can be exacerbated by energy depletion. In this study, we tested dietary glycerol as a way of replenishing muscle glycogen reserves of farmed gilthead seabream. Two diets were tested in duplicate (n = 42/tank). Results show 5% inclusion of crude glycerol in gilthead seabream diets induces increased muscle glycogen, ATP levels and firmness, with no deleterious effects in terms of growth, proximate composition, fatty acid profile, oxidative state, and organoleptic properties (aroma and color). Proteomic analysis showed a low impact of glycerol-supplementation on muscle metabolism, with most changes probably reflecting increased stress coping capacity in glycerol-fed fish. This suggests inclusion of crude glycerol in gilthead seabream diets (particularly in the finishing phase) seems like a viable strategy to increase glycogen deposition in muscle without negatively impacting fish welfare and quality.
- Effect of variable levels of dietary cholesterol and plant sterols on the growth performance and bone metabolism in gilthead seabream (Sparus aurata) juvenilesPublication . Dias, J.; Colen, Rita; Rodrigues, V.; Aragão, C.; Engrola, S.; Viegas, Michael; Laizé, Vincent; Gavaia, Paulo J.; Cancela, LeonorCholesterol is found in all animal tissues and is an important component of biological cell membranes with functions such as precursor to bile acids, hormones and vitamins. Fish meal and fish oil are cholesterol-rich ingredients. Replacement of these marine-derived ingredients by plant proteins and vegetable oils tends to reduce dietary cholesterol levels.
- Evaluating the impact of methionine-enriched diets in the liver of European seabass through label-free shotgun proteomicsPublication . Farinha, Ana Paula; Schrama, Denise; Silva, Tome; Conceicao, Luis E. C.; Colen, Rita; Engrola, Sofia; Rodrigues, Pedro; Cerqueira, MarcoPlant protein sources play an essential role in aquaculture by reducing the use of fish meal to sustainable levels, although further supplementation is needed to fulfill fish nutritional requirements. This work addressed fish growth performance and proteome changes to dietary methionine in European seabass juveniles. A dose-dependent response to methionine (Met) was observed on fish growth consistent with proteomic analyses, suggesting Met requirement >= 0.9% (w/w). Fish fed at 0.77% (w/w) exhibited reduced growth and an enrichment in proteins involved in cellular homeostasis. Proteomics data suggest an optimal nutritional status at 1.36% Met (w/w), together with putative beneficial effects on the immune system up to 1.66% Met (w/w). The response to dietary Met involved the convergence of different metabolic and signalling pathways implicated in cell growth and immune response e.g., mTOR, Hedgehog or the T Cell receptor signalling, coupled with a fine-tuning regulation of amino acid metabolism and translation.
