Browsing by Author "Del Río, Laura"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Contribution of storms to shoreline changes in mesotidal dissipative beaches: case study in the Gulf of Cádiz (SW Spain)Publication . Puig, María; Del Río, Laura; Plomaritis, Theocharis A.; Benavente, JavierIn this study an analysis of storminess and rates of shoreline change is performed and discussed jointly in four geomorphological units of the Gulf of Cádiz (SW Spain) for the period of 1956–2010. For this purpose, storm events are identified based on the following characteristics: wave height above 2.5 m, a minimum duration of 12 h and events with calm periods of less than 24 h were considered as a single event. Subsequently, energy parameters are determined in order to characterize storm-induced impacts. Conversely, geographic information system (GIS) tools are used to measure shoreline changes in aerial photographs and orthophotographs of each site, selecting the high water line as shoreline proxy. Each geomorphological unit is divided into different behavioural patterns according to recorded coastal changes, so that each one shows a particular behaviour. In general the variability of shoreline changes that is explained by storms and the relation between storm parameters and coastal changes present better results in exposed areas (Cádiz and Vistahermosa) than in sheltered areas (Valdelagrana spit barrier) because the former are more sensitive to storm impacts. On the contrary, in areas where there is no relation between coastal changes and storm parameters (Valdelagrana and Sancti Petri sand spit), it is suggested that anthropogenic factors are the main forcing agents determining shoreline behaviour. However, in these areas the storminess also modulates coastline recession by increasing erosion when the number of storms is high.
- Identification of risk hotspots to storm events in a coastal region with high morphodynamic alongshore variabilityPublication . Celedón, Victoria; Del Río, Laura; Ferreira, Óscar; Costas, Susana; Plomaritis, Theocharis A.High-energy storm events induce hazards that promote damage and destruction of property and infrastructure. Defining high-risk areas is therefore fundamental to prioritise management actions. This work presents the application of an approach to identify hotspots of storm impact at a regional scale (tens to hundreds of kilometres). The Coastal Risk Assessment Framework Phase 1 (CRAF1) is a hotspot selection method based on a coastal index that combines the potential hazard (i.e. overwash and erosion), the exposure (based on land use) and the vulnerability (based on socio-economic data) along each kilometre of the coast to assess the risk level. The suitability of the approach was tested on the southeastern coast of the Gulf of Cadiz (South Spain). CRAF1 was applied considering a morphological worst-case scenario and events of 10/50/100-year return period. The region shows a high overwash and erosion hazard level. Nevertheless, a relatively low number of risk hotspots were identified due to the low level of occupation in the study area. Comparison against available information of previous overwash and erosion events proved the reliability of the method to identify hotspots at a regional scale, even in a coastal area with high alongshore variability (geomorphology, wave exposure and tidal range). The results support the utility of the tool for coastal managers to prioritise and support risk reduction plans. Furthermore, the method presents two aspects that enlarge its potential applicability: (1) it is relatively easy to apply at a regional scale, and (2) it can be updated with new data to test different scenarios (e.g. sea-level rise).
- Variability in storm climate along the Gulf of Cadiz: the role of large scale atmospheric forcing and implications to coastal hazardsPublication . Plomaritis, Theocharis; Benavente, Javier; Laiz, Irene; Del Río, LauraIn the context of increased coastal hazards due to variability in storminess patterns, the danger of coastal damages and/or morphological changes is related to the sum of sea level conditions, storm surge, maximum wave height and run up values. In order to better understand the physical processes that cause the variability of the above parameters a 44 years reanalysis record (HIPOCAS) was used. The HIPOCAS time-series was validated with real wave and sea-level data using linear and vector correlation methods. In the present work changes in the magnitude, duration, frequency and approach direction of the Atlantic storms over the Gulf of Cadiz (SW Iberian Peninsula) were identified by computing various storm characteristics such as maximum wave height, total energy per storm wave direction and storm duration. The obtained time-series were compared with large-scale atmospheric indices such as the North Atlantic Oscillation (NAO) and the East Atlantic pattern. The results show a good correlation between negative NAO values and increased storminess over the entire Gulf of Cadiz. Furthermore, negative NAO values were correlated with high residual sea level values. Finally, a joint probability analysis of storm and sea level analysis resulted in increased probabilities of the two events happening at the same time indicating higher vulnerability of the coast and increased coastal risks. The above results were compared with coastal inundation events that took place over the last winter seasons in the province of Cadiz.