Browsing by Author "Félix, Rute C."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Allatostatin-type A, kisspeptin and galanin GPCRs and putative ligands as candidate regulatory factors of mantle functionPublication . Cardoso, João CR; Félix, Rute C.; Bjarnmark, Nadege; Power, DeborahAllatostatin-type A (AST-A), kisspeptin (KISS) and galanin (GAL) G-protein coupled receptor (GPCR) systems share a common ancestral origin in arthropods and the vertebrates where they regulate metabolism and reproduction. The molluscs are the second most diverse phylum in the animal kingdom, they occupy an important phylogenetic position, and their genome is more similar to deuterostomes than the arthropods and nematodes and thus they are good models for studies of gene family evolution and function. This mini-review intends to extend the current knowledge about AST-A, KISS and GAL GPCR system evolution and their putative function in the mollusc mantle. Comparative evolutionary analysis of the target GPCR systems was established by identifying homologues in genomes and tissue transcriptome datasets available for molluscs and comparing them to those of other metazoan systems. Studies in arthropods have revealed the existence of the AST-A system but the loss of homologues of the KISS and GAL systems. Homologues of the insect AST-AR and vertebrate KISSR genes were found in molluscs but putative GALR genes were absent. Receptor gene number suggested that members of this family have suffered lineage specific evolution during the molluscan radiation. In molluscs, orthologues of the insect AST-A peptides were not identified but buccalin peptides that are structurally related were identified and are putative receptor agonists. The identification of AST-AR and KISSR genes in molluscs strengthens the hypotheses that in metazoans members of the AST-AR subfamily share evolutionary proximity with KISSRs. The variable number of receptors and large repertoire of buccalin peptides may be indicative of the functional diversity of the AST-AR/IGSSR systems in molluscs. The identification of AST-A and KISS receptors and ligands in the mantle transcriptome indicates that in molluscs they may have acquired a novel function and may play a role in shell development or sensory detection in the mantle.
- A blood-free diet to rear anopheline mosquitoesPublication . Marques, Joana; Cardoso, João CR; Félix, Rute C.; Power, Deborah; Silveira, HenriqueMalaria research requires large-scale breeding and production conditions for mosquitoes (Anopheles spp.) in captivity. The sustainable and reliable production of mosquitoes is currently inhibited by the supply of fresh vertebrate blood. Alternatives to blood are required to promote efficient control strategies for malaria and other vector borne diseases that are transmitted by blood feeding insects. With this in mind, artificial liquid diets were formulated as substitutes for fresh vertebrate blood. Herein we report a blood-free artificial liquid diet that delivers feeding rates similar to blood and mimics the physiological effects of a fresh vertebrate blood meal. The diet induces ovarian and egg maturation of Anopheles mosquitoes and also produces good larval survival and development of functional adults. The formulated blood-free liquid diet is an important advance towards sustainable mosquito breeding in captivity and will reduce the maintenance costs of mosquito colonies and eliminate the need for fresh vertebrate blood.
- Corticotropin-releasing hormone family evolution: five ancestral genes remain in some lineagesPublication . Cardoso, João CR; Bergqvist, Christina A.; Félix, Rute C.; Larhammar, DanThe evolution of the peptide family consisting of corticotropin-releasing hormone ( CRH) and the three urocortins ( UCN1-3) has been puzzling due to uneven evolutionary rates. Distinct gene duplication scenarios have been proposed in relation to the two basal rounds of vertebrate genome doubling ( 2R) and the teleost fish-specific genome doubling ( 3R). By analyses of sequences and chromosomal regions, including many neighboring gene families, we show here that the vertebrate progenitor had two peptide genes that served as the founders of separate subfamilies. Then, 2R resulted in a total of five members: one subfamily consists of CRH1, CRH2, and UCN1. The other subfamily contains UCN2 and UCN3. All five peptide genes are present in the slowly evolving genomes of the coelacanth Latimeria chalumnae ( a lobe-finned fish), the spotted gar Lepisosteus oculatus ( a basal ray-finned fish), and the elephant shark Callorhinchus milii ( a cartilaginous fish). The CRH2 gene has been lost independently in placental mammals and in teleost fish, but is present in birds ( except chicken), anole lizard, and the nonplacental mammals platypus and opossum. Teleost 3R resulted in an additional surviving duplicate only for crh1 in some teleosts including zebrafish ( crh1a and crh1b). We have previously reported that the two vertebrate CRH/UCN receptors arose in 2R and that CRHR1 was duplicated in 3R. Thus, we can now conclude that this peptide-receptor system was quite complex in the ancestor of the jawed vertebrates with five CRH/UCN peptides and two receptors, and that crh and crhr1 were duplicated in the teleost fish tetraploidization.
- Evolution of the glucagon-like system across fishPublication . Cardoso, João CR; Félix, Rute C.; Costa, Carina; PFS, Palma; Canario, Adelino; Power, DeborahIn fishes, including the jawless lampreys, the most ancient lineage of extant vertebrates, plasma glucose levels are highly variable and regulation is more relaxed than in mammals. The regulation of glucose and lipid in fishes in common with mammals involves members of the glucagon (GCG)-like family of gastrointestinal peptides. In mammals, four peptides GCG, glucagon-like peptide 1 and 2 (GLP1 and GLP2) and glucose-dependent insulinotropic peptide (GIP) that activate four specific receptors exist. However, in lamprey and other fishes the glucagon-like family evolved differently and they retained additional gene family members (glucagon-related peptide, gcrp and its receptor, gcrpr) that are absent from mammals. In the present study, we analysed the evolution of the glucagon-like system in fish and characterized gene expression of the family members in the European sea bass (Dicentrarchus labrax) a teleost fish. Phylogenetic analysis revealed that multiple receptors and peptides of the glucagon-like family emerged early during the vertebrate radiation and evolved via lineage specific events. Synteny analysis suggested that family member gene loss is likely to be the result of a single gene deletion event. Lamprey was the only fish where a putative glp1r persisted and the presence of the receptor gene in the genomes of the elephant shark and coelacanth remains unresolved. In the coelacanth and elephant shark, unique proglucagon genes were acquired which in the former only encoded Gcg and Glp2 and in the latter, shared a similar structure to the teleost proglucagon gene but possessed an extra exon coding for Glp-like peptide that was most similar to Glp2. The variable tissue distribution of the gene transcripts encoding the ligands and receptors of the glucagon-like system in an advanced teleost, the European sea bass, suggested that, as occurs in mammals, they have acquired distinct functions. Statistically significant (p < .05) down-regulation of teleost proglucagon a in sea bass with modified plasma glucose levels confirmed the link between these peptides and metabolism. The tissue distribution of members of the glucagon-like system in sea bass and human suggests that evolution of the brain-gut-peptide regulatory loop diverged between teleosts and mammals despite the overall conservation and similarity of glucagon-like family members.
- Feeding and the rhodopsin family g-protein coupled receptors in nematodes and arthropodsPublication . Cardoso, João CR; Félix, Rute C.; Fonseca, V. G.; Power, DeborahIn vertebrates, receptors of the rhodopsin G-protein coupled superfamily (GPCRs) play an important role in the regulation of feeding and energy homeostasis and are activated by peptide hormones produced in the brain-gut axis.These peptides regulate appetite and energy expenditure by promoting or inhibiting food intake. Sequence and function homologs of human GPCRs involved in feeding exist in the nematode roundworm, Caenorhabditis elegans (C. elegans), and the arthropod fruit fly, Drosophila melanogaster (D. melanogaster), suggesting that the mechanisms that regulate food intake emerged early and have been conserved during metazoan radiation. Nematodes and arthropods are the most diverse and successful animal phyla on Earth. They can survive in a vast diversity of environments and have acquired distinct life styles and feeding strategies.The aim of the present review is to investigate if this diversity has affected the evolution of invertebrate GPCRs. Homologs of the C. elegans and D. melanogaster rhodopsin receptorswere characterized in the genome of other nematodes and arthropods and receptor evolution compared.With the exception of bombesin receptors (BBR) that are absent from nematodes, a similar gene complement was found. In arthropods, rhodopsin GPCR evolution is characterized by species-specific gene duplications and deletions and in nematodes by gene expansions in species with a free-living stage and gene deletions in representatives of obligate parasitic taxa. Based upon variation in GPCR gene number and potentially divergent functions within phyla we hypothesize that life style and feeding diversity practiced by nematodes and arthropods was one factor that contributed to rhodopsin GPCR gene evolution. Understanding how the regulation of food intake has evolved in invertebrates will contribute to the development of novel drugs to control nematodes and arthropods and the pests and diseases that use them as vectors.
- Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRsPublication . Cardoso, João CR; Félix, Rute C.; Power, DeborahNematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors (GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes.
- The calcitonin-like system is an ancient regulatory system of biomineralizationPublication . Cardoso, João CR; Félix, Rute C.; Ferreira, Vinícius; Peng, Maoxiao; Zhang, Xushuai; Power, DeborahBiomineralization is the process by which living organisms acquired the capacity to accumulate minerals in tissues. Shells are the biomineralized exoskeleton of marine molluscs produced by the mantle but factors that regulate mantle shell building are still enigmatic. This study sought to identify candidate regulatory factors of molluscan shell mineralization and targeted family B G-protein coupled receptors (GPCRs) and ligands that include calcium regulatory factors in vertebrates, such as calcitonin (CALC). In molluscs, CALC receptor (CALCR) number was variable and arose through lineage and species-specific duplications. The Mediterranean mussel (Mytilus galloprovincialis) mantle transcriptome expresses six CALCR-like and two CALC-precursors encoding four putative mature peptides. Mussel CALCR-like are activated in vitro by vertebrate CALC but only receptor CALCRIIc is activated by the mussel CALCIIa peptide (EC50 = 2.6 ×10-5 M). Ex-vivo incubations of mantle edge tissue and mantle cells with CALCIIa revealed they accumulated significantly more calcium than untreated tissue and cells. Mussel CALCIIa also significantly decreased mantle acid phosphatase activity, which is associated with shell remodelling. Our data indicate the CALC-like system as candidate regulatory factors of shell mineralization. The identification of the CALC system from molluscs to vertebrates suggests it is an ancient and conserved calcium regulatory system of mineralization.
- The physiological effect of polystyrene nanoplastic particles on fish and human fibroblastsPublication . Peng, Maoxiao; Félix, Rute C.; Canario, Adelino; Power, DeborahNumerous studies have identified the detrimental effects for the biosphere of large plastic debris, the effect of microplastics (MPs) and nanoplastics (NPs) is less clear. The skin is the first point of contact with NPs, and skin fibroblasts have a vital role in maintaining skin structure and function. Here, a comparative approach is taken using three fibroblast cell lines from the zebrafish (SJD.1), human male newborn (BJ-5ta) and female adult (HDF/TERT164) and their response to polystyrene NP (PS-NPs) exposure is characterized. Cells were exposed to environmentally relevant PS-NP sizes (50, 500 and 1000 nm) and concentrations (0.001 to 10 mu g/ml) and their uptake (1000 nm), and effect on cell viability, proliferation, migration, reactive oxygen species (ROS) production, apoptosis, alkaline phosphatase (ALP) and acid phosphatase (AP) determined. All fibroblasts took up PSNPs, and a relationship between PS-NP particle size and concentration and the inhibition of proliferation and cell migration was identified. The inhibitory effect of PS-NPs on proliferation was more pronounced for human skin fibroblasts. The presence of PS-NPs negatively affected fibroblast migration in a time-, size- and concentration-dependent manner with larger PS-NPs at higher concentrations causing a more significant inhibition of cell migration, with human fibroblasts being the most affected. No major changes were detected in ROS production or apoptosis in NP challenged fibroblasts. While the ALP activity was increased in all fibroblast cell lines, only fish fibroblasts showed a significant increase in AP activity. The heterogeneous response of fibroblasts induced by PS-NPs was clearly revealed by the segregation of HDF, BJ.5ta and SJD.1 fibroblasts in principal component analysis. Our results demonstrate that PS-NP exposure adversely affected cellular processes in a celltype and dose-specific manner in distinct fibroblast cell lines, emphasizing the need for further exploration of NP interactions with different cell types to better understand potential implications for human health.