Browsing by Author "Pacheco-Leyva, Ivette"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Acute Loss of Cited2 Impairs Nanog Expression and Decreases Self-Renewal of Mouse Embryonic Stem CellsPublication . Kranc, Kamil R.; Oliveira, Daniel; Armesilla-Diaz, Alejandro; Pacheco-Leyva, Ivette; Matias, Ana Catarina; Escapa, Ana Luísa; Subramani, Chithra; Wheadon, Helen; Trindade, Marlene; Nichols, Jennifer; Kaji, Keisuke; Enver, Tariq; Bragança, JoséIdentifying novel players of the pluripotency gene regulatory network centered on Oct4, Sox2, and Nanog as well as delineating the interactions within the complex network is key to understanding self-renewal and early cell fate commitment of embryonic stem cells (ESC). While overexpression of the transcriptional regulator Cited2 sustains ESC pluripotency, its role in ESC functions remains unclear. Here, we show that Cited2 is important for proliferation, survival, and self-renewal of mouse ESC. We position Cited2 within the pluripotency gene regulatory network by defining Nanog, Tbx3, and Klf4 as its direct targets. We also demonstrate that the defects caused by Cited2 depletion are, at least in part, rescued by Nanog constitutive expression. Finally, we demonstrate that Cited2 is required for and enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells.
- Cdkn2a inactivation promotes malignant transformation of mouse immature thymocytes before the β-selection checkpointPublication . Catarino, Telmo A.; Pacheco-Leyva, Ivette; Kindi, Faiza Al; Ghezzo, Marinella N.; Fernandes, Mónica T.; Costa, Telma; Rodrigues Dos Santos, NunoCDKN2A deletion is the most frequent genetic alteration in T-cell acute lymphoblastic leukemia (T-ALL), occurring across all molecular and immunophenotypic subtypes. CDKN2A encodes two functionally unrelated tumor suppressor proteins, ARF and INK4a, which are critical regulators of cell cycle and proliferation. Arf has been reported to suppress T-ALL development in post−b-selection thymocytes, but whether CDKN2A acts as a tumor suppressor gene in immature, pre−b-selection thymocytes remains to be elucidated. Resorting to a Rag2-deficient model of T-ALL, driven by the ETV6:: JAK2 fusion, we report that Cdkn2a haploinsufficiency at early stages of T-cell development facilitates leukemia development
- CITED2 cooperates with ISL1 and promotes cardiac differentiation of mouse embryonic stem cellsPublication . Pacheco-Leyva, Ivette; Matias, Ana Catarina; Oliveira, Daniel V.; Santos, João; Nascimento, Rita; Guerreiro, Eduarda; Michell, Anna C.; van De Vrugt, Annebel M.; Machado-Oliveira, Gisela; Ferreira, Guilherme; Domian, Ibrahim; Bragança, JoséThe transcriptional regulator CITED2 is essential for heart development. Here, we investigated the role of CITED2 in the specification of cardiac cell fate from mouse embryonic stem cells (ESC). The overexpression of CITED2 in undifferentiated ESC was sufficient to promote cardiac cell emergence upon differentiation. Conversely, the depletion of Cited2 at the onset of differentiation resulted in a decline of ESC ability to generate cardiac cells. Moreover, loss of Cited2 expression impairs the expression of early mesoderm markers and cardiogenic transcription factors (Isl1, Gata4, Tbx5). The cardiogenic defects in Cited2-depleted cells were rescued by treatment with recombinant CITED2 protein. We showed that Cited2 expression is enriched in cardiac progenitors either derived from ESC or mouse embryonic hearts. Finally, we demonstrated that CITED2 and ISL1 proteins interact physically and cooperate to promote ESC differentiation toward cardiomyocytes. Collectively, our results show that Cited2 plays a pivotal role in cardiac commitment of ESC.
- NF-kappa B-dependent RANKL expression in a mouse model of immature T-cell leukemiaPublication . Fernandes, Mónica T; Caroco, Lara S.; Pacheco-Leyva, Ivette; R. dos Santos, NunoActivation of the receptor activator of nuclear factor-kappa B (RANK) by its ligand (RANKL) is involved in both solid and hematological malignancies, including multiple myeloma, acute myeloid leukemia and B-cell leukemia. Although RANKL expression has been described in normal T cells, a potential role in T-cell leukemia remains undefined. Here, we used a model of immature T-cell leukemia/lymphoma, the TEL-JAK2 transgenic mice, to assess RANKL expression in leukemic cells and its regulatory mechanisms. We found that Rankl mRNA was significantly overexpressed in leukemic T cells when compared to wild-type thymocytes, their nonmalignant counterparts. Moreover, Rankl mRNA and RANKL surface expression in leukemic cells was induced by T-cell receptor (TCR) signaling activation, dependently on the NFKB signaling pathway. These results indicate that TCR-activated leukemic T cells express high levels of RANKL and are potential inducers of RANK signaling in microenvironmental cells. (C) 2019 Elsevier Inc. All rights reserved.
- P-selectin glycoprotein ligand 1 promotes T cell lymphoma development and disseminationPublication . Pereira, João L.; Cavaco, Patrícia; da Silva, Ricardo C.; Pacheco-Leyva, Ivette; Mereiter, Stefan; Pinto, Ricardo; Reis, Celso A.; Rodrigues Dos Santos, NunoP-selectin glycoprotein ligand-1 (PSGL-1) is a membrane-bound glycoprotein expressed in lymphoid and myeloid cells. It is a ligand of P-, E- and L-selectin and is involved in T cell trafficking and homing to lymphoid tissues, among other functions. PSGL-1 expression has been implicated in different lymphoid malignancies, so here we aimed to evaluate the involvement of PSGL-1 in T cell lymphomagenesis and dissemination. PSGL-1 was highly expressed at the surface of human and mouse T cell leukemia and lymphoma cell lines. To assess its impact on T cell malignancies, we stably expressed human PSGL-1 (hPSGL-1) in a mouse thymic lymphoma cell line, which expresses low levels of endogenous PSGL-1 at the cell surface. hPSGL-1-expressing lymphoma cells developed subcutaneous tumors in athymic nude mice recipients faster than control empty vector or parental cells. Moreover, the kidneys, lungs and liver of tumor-bearing mice were infiltrated by hPSGL-1-expressing malignant T cells. To evaluate the role of PSGL-1 in lymphoma cell dissemination, we injected intravenously control and hPSGL 1-expressing lymphoma cells in athymic mice. Strikingly, PSGL-1 expression facilitated disease infiltration of the kidneys, as determined by histological analysis and anti-CD3 immunohistochemistry. Together, these results indicate that PSGL-1 expression promotes T cell lymphoma development and dissemination to different organs.
- StemChecker: a web-based tool to discover and explore stemness signatures in gene setsPublication . Pinto, Jose P.; Kalathur, Ravi Kiran Reddy; Oliveira, Daniel V.; Barata, Tania; Machado, Rui; Machado, Susana; Pacheco-Leyva, Ivette; Duarte, Isabel; Futschik, Matthias E.Stem cells present unique regenerative abilities, offering great potential for treatment of prevalent pathologies such as diabetes, neurodegenerative and heart diseases. Various research groups dedicated significant effort to identify sets of genes-so-called stemness signatures-considered essential to define stem cells. However, their usage has been hindered by the lack of comprehensive resources and easy-to-use tools. For this we developed StemChecker, a novel stemness analysis tool, based on the curation of nearly fifty published stemness signatures defined by gene expression, RNAi screens, Transcription Factor (TF) binding sites, literature reviews and computational approaches. StemChecker allows researchers to explore the presence of stemness signatures in user-defined gene sets, without carrying-out lengthy literature curation or data processing. To assist in exploring underlying regulatory mechanisms, we collected over 80 target gene sets of TFs associated with pluri- or multipotency. StemChecker presents an intuitive graphical display, as well as detailed statistical results in table format, which helps revealing transcriptionally regulatory programs, indicating the putative involvement of stemness-associated processes in diseases like cancer. Overall, StemChecker substantially expands the available repertoire of online tools, designed to assist the stem cell biology, developmental biology, regenerative medicine and human disease research community. StemChecker is freely accessible at http://stemchecker.sysbiolab.eu.
- Transgenic αβ TCR tonic signaling is leukemogenic while strong stimulation is leukemia suppressivePublication . Catarino, Telmo A.; Pacheco-Leyva, Ivette; Baessa, Marina; Pereira, João L.; Rodrigues dos Santos, NunoThe pre–T cell receptor (TCR) and TCR complexes are frequently expressed in T cell acute lymphoblastic leukemia (T-ALL), an aggressive T cell precursor malignancy. Although mutations in TCR components are infrequent in T-ALL, earlier research indicated that transgenic αβ TCR expression in mouse T cell precursors promoted T-ALL development. However, we recently found that stimulation of TCR signaling in T-ALL induced leukemic cell apoptosis and suppressed leukemia. Our aim was to elucidate if a given αβ TCR complex has a dual role in leukemogenesis depending on the nature of the stimulus. We demonstrate that transgenic expression of the Marilyn αβ TCR, specific for the H-Y male antigen presented by major histocompatibility complex class II, triggers T-ALL development exclusively in female mice. This T-ALL exhibited Notch1 mutations, Cdkn2a copy number loss, and immature immunophenotype, and infiltrated both lymphoid and nonlymphoid organs. Furthermore, leukemic cells expressed surface CD5, a marker of tonic TCR signaling. T-ALL efficiently developed in Rag2-deficient Marilyn transgenic females, indicating that Rag2-mediated recombination is not implicated in this T-ALL model. T-ALL development was also observed in the OT-I TCR transgenic mouse model, but it did not occur when major histocompatibility complex class I was abrogated through genetic inactivation of β2-microglobulin. Remarkably, exposure of Marilyn female T-ALL cells to endogenous agonist antigens in male recipient mice or exogenous peptides in female recipient mice resulted in T-ALL apoptosis and prolonged mouse survival. These findings underscore the dual role of the same αβ TCR complex in T-ALL, in which tonic stimulation is leukemogenic, while strong stimulation suppresses leukemia.