Browsing by Author "Silva, Gabriela A."
Now showing 1 - 8 of 8
Results Per Page
Sort Options
- Aliskiren decreases oxidative stress and angiogenic markers in retinal pigment epithelium cellsPublication . S, Simão; Santos, Daniela F.; Silva, Gabriela A.There is growing evidence on the role of ocular renin-angiotensin system (RAS) in the development of diabetic retinopathy (DR), particularly due to the trigger of oxidative stress and angiogenesis. Despite this there is no effective RAS-based therapy in DR capable of preventing retinal damage induced by RAS activation. We recently described that retinal pigment epithelium (RPE) cells express the main components of the RAS. We here propose to investigate the role of glucose upon the retinal RAS and whether aliskiren, a direct renin inhibitor, protects RPE cells from angiogenesis and oxidative stress. RPE cells were chosen as target since one of the first events in DR is the dysfunction of the RPE retinal layer, which as a key function in maintaining the integrity of the retina. We found that the RAS present in the RPE cells was deregulated by hyperglycemic glucose concentrations. Exposure of RPE cells to angiotensin II increased the levels of the main pro-angiogenic factor, vascular endothelial growth factor (VEGF) in a concentration-dependent manner. Additionally, angiotensin II also stimulated the production of reactive oxygen species in RPE cells. Treatment of RPE cells with aliskiren decreased the levels of oxidative stress and promoted the expression of anti-angiogenic factors such as the pigment epithelium-derived factor and the VEGF(165)b isoform. Our findings demonstrate that the RAS is deregulated in hyperglycemic conditions and that aliskiren successfully protected RPE cells from RAS over activation. These anti-angiogenic and antioxidant properties described for aliskiren over RPE cells suggest that this drug has potential to be used in the treatment of diabetic retinopathy.
- Altered bone microarchitecture in a type 1 diabetes mouse model Ins2 (Akita)Publication . Pires De Carvalho, Filipe Ricardo; Calado, Sofia; Silva, Gabriela A.; Diogo, Gabriela S.; Moreira da Silva, Joana; Reis, Rui L.; Cancela, M. Leonor; Gavaia, PauloType 1 diabetes mellitus (T1DM) has been associated to several cartilage and bone alterations including growth retardation, increased fracture risk, and bone loss. To determine the effect of long term diabetes on bone we used adult and aging Ins2 Akita mice that developed T1DM around 3-4 weeks after birth. Both Ins2 Akita and wild-type (WT) mice were analyzed at 4, 6, and 12 months to assess bone parameters such as femur length, growth plate thickness and number of mature and preapoptotic chondrocytes. In addition, bone microarchitecture of the cortical and trabecular regions was measured by microcomputed tomography and gene expression of Adamst-5, Col2, Igf1, Runx2, Acp5, and Oc was quantified by quantitative real-time polymerase chain reaction. Ins2 Akita mice showed a decreased longitudinal growth of the femur that was related to decreased growth plate thickness, lower number of chondrocytes and to a higher number of preapoptotic cells. These changes were associated with higher expression of Adamst-5, suggesting higher cartilage degradation, and with low expression levels of Igf1 and Col2 that reflect the decreased growth ability of diabetic mice. Ins2 Akita bone morphology was characterized by low cortical bone area (Ct.Ar) but higher trabecular bone volume (BV/TV) and expression analysis showed a downregulation of bone markers Acp5, Oc, and Runx2. Serum levels of insulin and leptin were found to be reduced at all-time points Ins2 Akita . We suggest that Ins2 Akita mice bone phenotype is caused by lower bone formation and even lower bone resorption due to insulin deficiency and to a possible relation with low leptin signaling.
- Chitosan-Hyaluronic acid hybrid vectors for retinal gene therapyPublication . Oliveira, Ana; Bitoque, Diogo; Silva, Gabriela A.
- Evaluation of cystamine-modified hyaluronic acid/chitosan polyplex as retinal gene vectorPublication . Oliveira, Ana V.; Marcelo, Adriana; Costa, Ana M. Rosa da; Silva, Gabriela A.A successful gene therapy approach can prevent or treat congenital and acquired diseases. However, there is still no ideal non-viral vector for gene delivery in a safe and timely manner. In this report the anionic polymer hyaluronic acid (HA) was investigated as a potential vector for gene therapy. Due to its intrinsic characteristics it constitutes an excellent candidate to deliver therapeutic genes, pending the modification of its surface charge.
- GLUT1 activity contributes to the impairment of PEDF secretion by the RPEPublication . Calado, Sofia; Alves, Liliana S.; S, Simão; Silva, Gabriela A.Purpose: In this study, we aimed to understand whether glucose transporter 1 (GLUT1) activity affects the secretion capacity of antiangiogenic factor pigment epithelium-derived factor (PEDF) by the RPE cells, thus explaining the reduction in PEDF levels observed in patients with diabetic retinopathy (DR).Methods: Analysis of GLUT1 expression, localization, and function was performed in vitro in RPE cells (D407) cultured with different glucose concentrations, corresponding to non-diabetic (5 mM of glucose) and diabetic (25 mM of glucose) conditions, further subjected to normoxia or hypoxia. The expression of PEDF was also evaluated in the secretome of the cells cultured in these conditions. Analysis of GLUT1 and PEDF expression was also performed in vivo in the RPE of Ins2(Akita) diabetic mice and age-matched wild-type (WT) controls.Results: We observed an increase in GLUT1 under hypoxia in a glucose-dependent manner, which we found to be directly associated with the translocation and stabilization of GLUT1 in the cell membrane. This stabilization led to an increase in glucose uptake by RPE cells. This increase was followed by a decrease in PEDF expression in RPE cells cultured in conditions that simulated DR. Compared with non-diabetic WT mice, the RPE of Ins2Akita mice showed increased GLUT1 overexpression with a concomitant decrease in PEDF expression.Conclusions: Collectively, our data show that expression of GLUT1 is stimulated by hyperglycemia and low oxygen supply, and this overexpression was associated with increased activity of GLUT1 in the cell membrane that contributes to the impairment of the RPE secretory function of PEDF.
- Human-derived NLS enhance the gene transfer efficiency of chitosanPublication . Bitoque, Diogo; Morais, Joana; Oliveira, Ana; Sequeira, Raquel L.; Calado, Sofia; Fortunato, Tiago M.; Simão, Sónia; Rosa Da Costa, Ana; Silva, Gabriela A.Nuclear import is considered as one of the major limitations for non-viral gene delivery systems and the incorporation of nuclear localization signals (NLS) that mediate nuclear intake can be used as a strategy to enhance internalization of exogenous DNA. In this work, human-derived endogenous NLS peptides based on insulin growth factor binding proteins (IGFBP), namely IGFBP-3 and IGFBP-5, were tested for their ability to improve nuclear translocation of genetic material by non-viral vectors. Several strategies were tested to determine their effect on chitosan mediated transfection efficiency: co-administration with polyplexes, co-complexation at the time of polyplex formation, and covalent ligation to chitosan. Our results show that co-complexation and covalent ligation of the NLS peptide derived from IGFBP-3 to chitosan polyplexes yields a 2-fold increase in transfection efficiency, which was not observed for NLS peptide derived from IGFBP-5. These results indicate that the integration of IGFBP-NLS-3 peptides into polyplexes has potential as a strategy to enhance the efficiency of non-viral vectors.
- Non-viral strategies for ocular gene deliveryPublication . V. Oliveira, Ana; Rosa Da Costa, Ana; Silva, Gabriela A.The success of gene therapy relies on efficient gene transfer and stable transgene expression. The in vivo efficiency is determined by the delivery vector, route of administration, therapeutic gene, and target cells. While some requirements are common to several strategies, others depend on the target disease and transgene product. Consequently, it is unlikely that a single system is suitable for all applications. This review examines current gene therapy strategies, focusing on non-viral approaches and the use of natural polymers with the eye, and particularly the retina, as their gene delivery target. (C) 2017 Elsevier B.V. All rights reserved.
- pEPito-driven PEDF Expression Ameliorates Diabetic Retinopathy HallmarksPublication . Calado, Sofia M.; Diaz-Corrales, Francisco; Silva, Gabriela A.Diabetic retinopathy (DR) is one of the major complications of diabetes mellitus. It is characterized by retinal microvascular changes caused by chronic exposure to hyperglycemia, leading to low tissue oxygenation and ultimately to neovascularization. Laser photocoagulation and vitrectomy are the most efficient treatments for DR, but display severe side effects such as the destruction of the healthy retina. Another clinical approach uses antiangiogenic agents to prevent and delay progression of neovascularization, but these require recurrent local administrations that increase the possibility of retinal detachment, vitreous hemorrhage, and cataract formation. Studies in human diabetic retinas have revealed an imbalance between proangiogenic factors such as the vascular endothelial growth factor (VEGF) and antiangiogenic factors, such as pigment epithelial-derived factor (PEDF). This imbalance favors pathological angiogenesis contributing to DR, and can constitute a therapeutic target. Gene therapy was recently shown to be an adequate intervention for long-term treatment of several retinal pathologies. We have previously shown the newly engineered episomal vector pEPito to be able of sustained gene expression in the mouse retina. We here show that pEPito was able to overexpress PEDF for up to three months, both in in vitro cultures of human retinal pigment epithelial cells and in the retina of diabetic mice after a single subretinal injection. In vivo, in parallel with the increase in PEDF we observed a decrease in VEGF levels in injected compared with noninjected eyes and a significant effect on two hallmarks of DR: reduction of glucose transport (by glucose transporter GLUT1), and reduction of inflammation by decreased reactivity of microglia. Jointly, these results point to a significant therapeutic potential of gene therapy with pEPito-PEDF for the treatment of DR.