Percorrer por autor "Valero, Myriam"
A mostrar 1 - 10 de 23
Resultados por página
Opções de ordenação
- Analysis of sexual phenotype and prezygotic fertility in natural populations of Fucus spiralis, F. vesiculosus (Fucaceae, Phaeophyceae) and their putative hybridsPublication . Billard, E.; Serrão, Ester; Pearson, G. A.; Engel, C. R.; Destombe, C.; Valero, MyriamIn the genus Fucus, the character dioecy/hermaphroditism has undergone multiple state changes and hybridization is possible between taxa with contrasting mating systems, e.g. between the dioecious Fucus vesiculosus and the hermaphrodite F. spiralis. In the context of mating system evolution, we evaluated the potential consequences of hybridization by studying the variation in sexual phenotype and prezygotic fertility. Firstly, as a result of hybridization between the two sexual systems, gender variation may arise depending on the relative importance of genes with large versus small phenotypic effects. We thus qualitatively examined the extent of gender variation within and among individual hybrids in comparison with both parental species. Secondly, if hybridization breaks up co-adapted gene complexes, hybrid fertility may be reduced in comparison with both parental species. Therefore, we also quantified male and female prezygotic fertility in parental species and their hybrids in order to test for reduction in hybrid fitness. A total of 89 sexually mature individuals (20 F. spiralis, 40 F. vesiculosus, 10 hermaphrodite hybrids and 19 dioecious hybrids) were sampled in two geographically distant regions (France and Portugal) and six conceptacles per individual were observed. Within-individual variation was very restricted qualitatively – only one hybrid carried a conceptacle with a different sexual phenotype from the five others – as well as quantitatively. This suggests a simple genetic system for sex determination involving a few genes with major effects. In addition, analyses showed no significant decrease in hybrid fertility compared with parental species. Moreover, hybrids exhibited all sexual phenotypes, suggesting several generations of hybridization and backcrossing and, therefore, that hybrids are reproductively successful. Finally, the occurrence of sterile paraphyses in female and hermaphrodite individuals was interpreted as a relic of male function and suggests that, as in higher plants, evolution from hermaphroditism to dioecy may be the most parsimonious pathway.
- Congruence between fine-scale genetic breaks and dispersal potential in an estuarine seaweed across multiple transition zonesPublication . Nicastro, Katy; Assis, J.; Serrao, Ester; Pearson, Gareth; Neiva, J.; Valero, Myriam; Jacinto, Rita; Zardi, Gerardo, IGenetic structure in biogeographical transition zones can be shaped by several factors including limited dispersal across barriers, admixture following secondary contact, differential selection, and mating incompatibility. A striking example is found in Northwest France and Northwest Spain, where the estuarine seaweed Fucus ceranoides L. exhibits sharp, regional genetic clustering. This pattern has been related to historical population fragmentation and divergence into distinct glacial refugia, followed by post-glacial expansion and secondary contact. The contemporary persistence of sharp ancient genetic breaks between nearby estuaries has been attributed to prior colonization effects (density barriers) but the effect of oceanographic barriers has not been tested. Here, through a combination of mesoscale sampling (15 consecutive populations) and population genetic data (mtIGS) in NW France, we define regional genetic disjunctions similar to those described in NW Iberia. Most importantly, using high resolution dispersal simulations for Brittany and Iberian populations, we provide evidence for a central role of contemporary hydrodynamics in maintaining genetic breaks across these two major biogeographic transition zones. Our findings further show the importance of a comprehensive understanding of oceanographic regimes in hydrodynamically complex coastal regions to explain the maintenance of sharp genetic breaks along continuously populated coastlines.
- Deep reefs are climatic refugia for genetic diversity of marine forestsPublication . Assis, J.; Coelho, Nelson Castilho; Lamy, Thomas; Valero, Myriam; Alberto, Filipe; Serrão, EsterAimPast climate-driven range shifts shaped intraspecific diversities of species world-wide. Earlier studies, focused on glacial refugia, might have overlooked genetic erosion at lower latitudes associated with warmer periods. For marine species able to colonize deeper waters, depth shifts might be important for local persistence, preventing some latitudinal shifts, analogous to elevational refugia in terrestrial habitats. In this study, we asked whether past latitudinal or depth range shifts explain extant gene pools in Saccorhiza polyschides, a large habitat structuring brown alga distributed from coastal to offshore deep reefs.LocationNorth-east Atlantic and western Mediterranean basin.MethodsGenetic structure and diversity were inferred using seven microsatellite loci, for 27 sites throughout the entire distributional range. Ecological niche modelling (ENM) was performed with and without information about genetic structure (sub-taxon niche structure) to predict distributions for the Last Glacial Maximum (LGM), the warmer Mid-Holocene (MH) and the present.ResultsBoth ENM approaches predicted a wider potential distribution in deeper waters than is presently known, a post-glacial expansion to northern shores and the extirpation of southern edges during the warmer MH. Genetic data corroborated range dynamics, revealing three major genetic groups with current boundaries in the Bay of Biscay and the Lisbon coastal region, pinpointing ancient refugial origins. Despite extensive southern range contraction, the southernmost warmer regions are still the richest in genetic diversity, indicating long-term persistence of large populations. ENMs suggested that this could only have been possible due to stable refugia in deeper reefs.Main conclusionsThe global distribution of gene pools of temperate marine forests is explained by past range shifts that structured both latitudinal glacial refugia and depth refugia during warmer periods. Deep rear edge populations play a fundamental role during periods of extreme climate, allowing persistence and retaining some of the largest genetic diversity pools of the species' distribution.
- Development of tools to rapidly identify cryptic species and characterize their genetic diversity in different European kelp speciesPublication . Mauger, Stéphane; Fouqueau, Louise; Avia, Komlan; Reynes, Lauric; Serrao, Ester; Neiva, J.; Valero, MyriamMarine ecosystems formed by kelp forests are severely threatened by global change and local coastline disturbances in many regions. In order to take appropriate conservation, mitigation, and restoration actions, it is crucial to identify the most diverse populations which could serve as a “reservoir” of genetic diversity. This requires the development of specifc tools, such as microsatellite markers to investigate the level and spatial distribution of genetic diversity. Here, we tested new polymorphic microsatellite loci from the genome of the kelp, Laminaria digitata, and tested them for cross-amplifcation and polymorphism in four closely related congeneric species (Laminaria hyperborea, Laminaria ochroleuca, Laminaria rodriguezii, and Laminaria pallida). Adding these 20 new microsatellite loci to the ten L. digitata loci previously developed by Billot et al. (Mol Ecol 7:1778-1780, 1998) and Brenan et al. (J R Soc Interface 11:1-12, 2014) and to the ten L. ochroleuca loci previ ously developed by Coelho et al. (Conserv Genet Resource 6:949-950, 2014), we retained a total of 30 polymorphic loci for L. digitata, 21 for L. hyperborea, 16 for L ochroleuca, 18 for L. rodriguezii, and 12 for L. pallida. These markers have been tested for the frst time in the last two species. As predicted, the proportion of markers that cross-amplifed between species decreased with increasing genetic distance. In addition, as problems of species identifcation were reported in this family, mainly between L. digitata and Hedophyllum nigripes, but also between L. digitata, L. hyperborea, and L. ochroleuca in areas where their range distributions overlap, we report a rapid PCR identifcation method based on species-specifc COI mitochondrial primers that allows these four species of kelp to be rapidly distinguished.
- Dinucleotide microsatellite markers in the genus CaulerpaPublication . E, Varela-Álvarez; Glenn, T. C.; Serrão, Ester; Duarte, C. M.; Martínez-Daranas, B.; Valero, Myriam; Marbà, N.Caulerpa spp. are clonal green marine algae which often act as invasive species when growing outside their native biogeographical borders. Over the two past decades, Caulerpa taxifolia has spread along the Mediterranean coast, presently occurring at 70 sites and covering nearly 3,000 ha of subtidal area. New genetic markers (microsatellites) have been developed to assess clonal structure and genetic diversity of recently established populations of the invasive species C. taxifolia and Caulerpa racemosa in comparison with populations of the native Caulerpa prolifera in the Mediterranean. Our results show that nine polymorphic markers have been developed for C. prolifera, seven for C. taxifolia, and three for C. racemosa. Genetic diversity in Caulerpa was assessed in two geographical scales: one at a population scale where 40 thalli units were collected from C. prolifera in Cala d’Or, Mallorca, Spain, and another at a species scale, where 30 sample units were analyzed for C. prolifera, 24 for C. taxifolia, and 24 for C. racemosa from different sites in the Mediterranean, Atlantic, and Pacific Ocean. Number of alleles, expected heterozygosity, and marker amplification success are provided in each case.
- Drifting fronds and drifting alleles: range dynamics, local dispersal and habitat isolation shape the population structure of the estuarine seaweed Fucus ceranoidesPublication . Neiva, J.; Pearson, G. A.; Valero, Myriam; Serrão, EsterAim: The seaweed Fucus ceranoides is restricted to spatially discrete estuarine habitats and lacks planktonic dispersal phases; it is therefore expected to exhibit strong population differentiation. Its cold-temperate affinities and mtDNA variation imply that the northern part of the species’ range, where F. ceranoides is now ubiquitous, was recently colonized after the onset of the last deglaciation, potentially resulting in areas with greater genetic homogeneity. Here we examine the population structure of F. ceranoides to test these predictions, emphasizing the contrasting genetic signatures of limited dispersal in refugial versus recently colonized regions. Location: North-eastern Atlantic estuaries from Portugal to Norway. Methods: A total of 504 individuals from 21 estuarine sites spanning the entire range of F. ceranoides were sampled and genotyped for nine microsatellite loci. Population structure was inferred from several genotypic and allele-frequency analyses. Geographical patterns of genetic diversity were used to reconstruct the historical biogeography of the species. Results: Genetic diversity and regional population differentiation showed a consistent decline with increasing latitude. Southernmost populations harboured most of the endemic variation, whereas the northern populations (> 55 N) were almost fixed for the same alleles across loci. In southern and central regions of its distribution, F. ceranoides showed striking population subdivision, with many of the sampled estuaries corresponding to coherent genetic units that were easily discriminated from one another with standard clustering methods. Main conclusions: The geographical pattern of genetic diversity supports the long-term refugial status of Iberia and a post-glacial range expansion of F. ceranoides into previously glaciated latitudes. Despite the species’ capacity to colonize newly available habitats, the genetic structure of F. ceranoides outside the recently (re)colonized range reveals that gene flow between populations is extremely low. This study provides a remarkable example of how infrequent and spatially limited dispersal can have contrasting effects at the scales of metapopulation (connectivity) versus range dynamics (habitat tracking), and of how dispersal restrictions can result in either genetic divergence or homogeneity depending on the maturity and demographic conditions of the populations.
- A European biobanking strategy for safeguarding macroalgal genetic material to ensure food security, biosecurity and conservation of biodiversityPublication . Hofmann, Laurie C.; Brakel, Janina; Bartsch, Inka; Arismendi, Gabriel Montecinos; Bermejo, Ricardo; Parente, Manuela I.; Creis, Emeline; Clerck, Olivier De; Jacquemin, Bertrand; Knoop, Jessica; Lorenz, Maike; Machado, Levi Pompermayer; Orfanidis, Sotiris; Probert, Ian; Menendez, , Cecilia Rad; Ross, Michael; Rautenberger, Ralf; Schiller, Jessica; Serrao, Ester A.; Steinhagen, Sophie; Sulpice, Ronan; Valero, Myriam; Wichard, Thomas; Serrao, Ester A.; Martins, neuzaBiobanking (also known as germplasm banking) of genetic material is a well-established concept for preserving plant genetic diversity and also contributes to food security, conservation and restoration. Macroalgae currently represent a very small percentage of the strains in publicly accessible European germplasm banks, despite the increasing recognition of their contribution to achieving several of the United Nations Sustainable Development Goals. There is no strategic coordination of existing macroalgal strains, which could have severe ecological and economic implications as species and their genetic diversity disappear rapidly due to local and global environmental stressors. In this opinion paper, we stress the importance of a coordinated European effort for preserving macroalgal genetic diversity and suggest the development of a three-pillared system to safeguard European macroalgal genetic material consisting of (1) a European Board of Macroalgal Genetic Resources (EBMGR) to provide supervision, support and coordination, (2) a network of germplasm banks consisting of currently existing and newly established infrastructures and (3) an interoperable databank integrating existing databanks. While it will be the task of the EBMGR to identify and coordinate priorities, we offer initial recommendations for preserving macroalgal genetic material, discuss the risks of inaction, and highlight the challenges that must be overcome.
- Evolution and diversification within the intertidal brown macroalgae Fucus spiralis/F. vesiculosus species complex in the North AtlanticPublication . Coyer, J. A.; Hoarau, G.; Costa, J. F.; Hogerdijk, B.; Serrão, Ester; Billard, E.; Valero, Myriam; Pearson, G. A.; Olsen, J. L.We examined 733 individuals of Fucusspiralis from 21 locations and 1093 Fucusvesiculosus individuals from 37 locations throughout their northern hemisphere ranges using nuclear and mitochondrial markers. Three genetic entities of F. spiralis were recovered. In northern and sympatric populations, the presence of "F. spiralis Low" in the mid-intertidal and "F. spiralis High" in the high-intertidal was confirmed and both co-occurred with the sister species F. vesiculosus. The third and newly-discovered entity, "F. spiralis South", was present mainly in the southern range, where it did not co-occur with F. vesiculosus. The South entity diverged early in allopatry, then hybridized with F. vesiculosus in sympatry to produce F. spiralis Low. Ongoing parallel evolution of F. spiralis Low and F. spiralis High is most likely due to habitat preference/local selection and maintained by preferentially selfing reproductive strategies. Contemporary populations of F. spiralis throughout the North Atlantic stem from a glacial refugium around Brittany involving F. spiralis High; F. spiralis South was probably unaffected by glacial episodes. Exponential population expansion for F. vesiculosus began during the Cromer and/Holstein interglacial period (300,000-200,000 yrs BP). Following the last glacial maximum (30,000-22,000 yrs BP), a single mtDNA haplotype from a glacial refugium in SW Ireland colonized Scandinavia, the Central Atlantic islands, and the W Atlantic.
- Fine-scale genetic breaks driven by historical rangedynamics and ongoing density-barrier effects in theestuarine seaweed Fucus ceranoides L.Publication . Neiva, J.; Pearson, G. A.; Valero, Myriam; Serrão, EsterFactors promoting the emergence of sharp phylogeographic breaks include restricted dispersal, habitat discontinuity, physical barriers, disruptive selection, mating incompatibility, genetic surfing and secondary contact. Disentangling the role of each in any particular system can be difficult, especially when species are evenly distributed across transition zones and dispersal barriers are not evident. The estuarine seaweed Fucus ceranoides provides a good example of highly differentiated populations along its most persistent distributional range at the present rear edge of the species distribution, in NW Iberia. Intrinsic dispersal restrictions are obvious in this species, but have not prevented F. ceranoides from vastly expanding its range northwards following the last glaciation, implying that additional factors are responsible for the lack of connectivity between neighbouring southern populations. In this study we analyze 22 consecutive populations of F. ceranoides along NW Iberia to investigate the processes generating and maintaining the observed high levels of regional genetic divergence. Results Variation at seven microsatellite loci and at mtDNA spacer sequences was concordant in revealing that Iberian F. ceranoides is composed of three divergent genetic clusters displaying nearly disjunct geographical distributions. Structure and AFC analyses detected two populations with an admixed nuclear background. Haplotypic diversity was high in the W sector and very low in the N sector. Within each genetic cluster, population structure was also pervasive, although shallower. Conclusions The deep divergence between sectors coupled with the lack of support for a role of oceanographic barriers in defining the location of breaks suggested 1) that the parapatric genetic sectors result from the regional reassembly of formerly vicariant sub-populations, and 2) that the genetic discontinuities at secondary contact zones (and elsewhere) are maintained despite normal migration rates. We conclude that colonization and immigration, as sources of gene-flow, have very different genetic effects. Migration between established populations is effectively too low to prevent their differentiation by drift or to smooth historical differences inherited from the colonization process. F. ceranoides, but possibly low-dispersal species in general, appear to be unified to a large extent by historical, non-equilibrium processes of extinction and colonization, rather than by contemporary patterns of gene flow.
- Fucus vesiculosus and spiralis species complex: A nested model of local adaptation at the shore levelPublication . Billard, E.; Serrão, Ester; Pearson, G. A.; Destombe, C.; Valero, MyriamIntertidal rocky shores provide classic examples of habitat-driven divergent selection. We show that the species complex Fucus vesiculosus L./F. spiralis L. is composed of 3 distinct genetic entities that have evolved along different time scales. Using assignment tests based on microsatellite markers and performed on randomly sampled individuals in 2 separate geographic regions (Portugal and France), we reveal that F. spiralis consists of 2 genetic entities that have distinct vertical distributional patterns along the intertidal gradient of selective pressures. Individuals assigned to the cluster found higher on the shore are also morphologically different. They are smaller and bushy, with dichotomous ramifications and no sterile rime around receptacles. Patterns of genetic divergence suggest different times and pathways to reproductive isolation. Divergence between F. vesiculosus and the F. spiralis complex seems to have occurred first, coinciding with divergence in reproductive mode; dioecy versus selfing hermaphroditism. Later, in the hermaphroditic lineage, parallel evolution of 2 co-occurring genetic clusters may have been driven by natural selection and facilitated by high selfing rates in the F. spiralis complex.
- «
- 1 (current)
- 2
- 3
- »
