Repository logo
 
Loading...
Profile Picture
Person

Cabrita, Cristiano Lourenço

Search Results

Now showing 1 - 2 of 2
  • Extending the functional training approach for B-splines
    Publication . Cabrita, Cristiano Lourenço; Ruano, Antonio; Ferreira, P. M.; Kóczy, László T.
    When used for function approximation purposes, neural networks belong to a class of models whose parameters can be separated into linear and nonlinear, according to their influence in the model output. This concept of parameter separability can also be applied when the training problem is formulated as the minimization of the integral of the (functional) squared error, over the input domain. Using this approach, the computation of the gradient involves terms that are dependent only on the model and the input domain, and terms which are the projection of the target function on the basis functions and on their derivatives with respect to the nonlinear parameters, over the input domain. This paper extends the application of this formulation to B-splines, describing how the Levenberg- Marquardt method can be applied using this methodology. Simulation examples show that the use of the functional approach obtains important savings in computational complexity and a better approximation over the whole input domain.
  • Exploiting the functional training approach in Takagi-Sugeno Neuro-fuzzy Systems
    Publication . Cabrita, Cristiano Lourenço; Ruano, Antonio; Ferreira, P. M.; Kóczy, László T.
    When used for function approximation purposes, neural networks and neuro-fuzzy systems belong to a class of models whose parameters can be separated into linear and nonlinear, according to their influence in the model output. This concept of parameter separability can also be applied when the training problem is formulated as the minimization of the integral of the (functional) squared error, over the input domain. Using this approach, the computation of the derivatives involves terms that are dependent only on the model and the input domain, and terms which are the projection of the target function on the basis functions and on their derivatives with respect to the nonlinear parameters, over the input domain. These later terms can be numerically computed with the data. The use of the functional approach is introduced here for Takagi-Sugeno models. An example shows that this approach obtains better results than the standard, discrete technique, as the performance surface employed is more similar to the one obtained with the function underlying the data. In some cases, as shown in the example, a complete analytical solution can be found.