Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 71
  • Photosensitizers for photodynamic therapy: One-pot heterogeneous catalytic transfer reduction of porphyrins
    Publication . Fernandes, A.; Rosa da Costa, Ana; Serra, Arménio C.; Pires, Catarina
    A number of new porphyrin-based photosensitizers have been developed for Photodynamic Therapy (PDT) in recent years. Chlorins, which are a reduced form of porphyrins, show better potential of application since they have a stronger absorption band on the red region of the visible spectrum and, hence, a deeper penetration into tissues. We found that by using heterogeneous catalytic transfer reduction (CTR), meso-tetraphenylporphyrin (TPP) could be hydrogenated, although in modest yields, to meso-tetraphenylchlorin (TPC) in a single reaction step. Best reaction conditions were attained using formic acid or sodium phosphinate/water as hydrogen donors, tetrahydrofuran (THF) or toluene as solvent and 10% palladium on charcoal as catalyst.
  • Biocompatibility and stability of polysaccharide polyelectrolyte complexes aimed at respiratory delivery
    Publication . Rodrigues, Susana; Cardoso, Lurdes; Costa, Ana M. Rosa da; Grenha, Ana
    Chitosan (CS) and chondroitin sulfate (CHS) are natural polymers with demonstrated applicability in drug delivery, while nanoparticles are one of the most explored carriers for transmucosal delivery of biopharmaceuticals. In this work we have prepared CS/CHS nanoparticles and associated for the first time the therapeutic protein insulin. Fluorescein isothiocyanate bovine serum albumin (FITC-BSA) was also used to enable comparison of behaviors regarding differences in molecular weight (5.7 kDa versus 67 kDa). Nanoparticles of approximately 200 nm and positive zeta potential around +20 mV were obtained. These parameters remained stable for up to 1 month at 4 C. Proteins were associated with efficiencies of more than 50%. The release of FITC-BSA in PBS pH 7.4 was more sustained (50% in 24 h) than that of insulin (85% in 24 h). The biocompatibility of nanoparticles was tested in Calu-3 and A549 cells by means of three different assays. The metabolic assay MTT, the determination of lactate dehydrogenase release, and the quantification of the inflammatory response generated by cell exposure to nanoparticles have indicated an absence of overt toxicity. Overall, the results suggest good indications on the application of CS/CHS nanoparticles in respiratory transmucosal protein delivery, but the set of assays should be widened to clarify obtained results.
  • In vitro behaviour of konjac glucomannan microparticles aimed at pulmonary tuberculosis therapy
    Publication . Guerreiro, Filipa; Swedrowska, Magda; Rosa Da Costa, Ana; Grenha, Ana; Forbes, Ben
    Tuberculosis is one of the highest causes of death worldwide. Long periods of treatment are required and result in some cases in therapeutic incompliance, potentiating the development of multidrug-resistant tuberculosis. Thus, new approaches to treat the infection are required as an alternative to conventional orally administered treatment. This work proposes the development of an inhalable system, which is specifically targeted to alveolar macrophages, where the Mycobacterium tuberculosis is located. The targeting is mainly driven by the selected matrix material, konjac glucomannan (KGM), a natural polymer comprising mannan units that are expected to potentiate phagocytosis. Microparticles were loaded with two antitubercular drugs, isoniazid (INH) and rifabutin (RFB). KGM/INH/RFB microparticles were produced by spray-drying to produce particles with suitable characteristics to deliver INH and RFB to the alveolar region. The KGM/INH/RFB microparticles possessed an aerodynamic diameter of approximately 3 µm, meeting the requirement of a therapy targeted to alveolar macrophages. Moreover, KGM microparticles exhibited suitable geometric size (2.24 µm) and shape (spherical) to be phagocytosed to deliver drugs to infected macrophages. INH and RFB were associated with KGM microparticles with efficiencies of 91% and 74%, respectively. Similar in vitro release profiles were observed for both drugs in simulated lung fluid (SLF) replicating the lining fluid composition found in human alveoli.
  • Sulphated locust bean gum-coated lipid nanocapsules as potential lung delivery carriers
    Publication . Pontes, Jorge Filipe; Braz, L.; Guerreiro, Filipa; Rosa Da Costa, Ana; Almouazen, Eyad; Lollo, Giovanna; Grenha, Ana
    Drugs pertaining to Biopharmaceutics Classification System (BCS) classes II and IV have limitations in their delivery, including in the lung. Therefore, drug delivery carriers have been proposed to improve the therapeutic effectiveness of such drugs. This work proposes lipid nanocapsules (LNC) as a potential platform for lung drug delivery. Locust bean gum (LBG), which is a galactomannan, was used as polymeric shell, protecting the oily core of the nanocapsules and providing their surface with hydrophilic character. Due to the neutral character of LBG, in order to enable nanocapsule formation, a sulphate derivative (LBGS) was prepared, which was confirmed by Fourier-transformed infrared (FTIR) spectroscopy. The electrostatic interaction between the negatively charged sulphate groups of LBGS and the positively charged groups of the used cationic lipid (1,2-dioleoyloxy-3- trimethylammoniumpropanchloride, DOTAP), allowed the formation of monodisperse nanocapsules, with sizes around 200 nm and strongly negative zeta potentials, between -70 and -85 mV. Envisaging potential lung drug delivery, the LBGS-coated LNC were co-formulated with mannitol using spray-drying, producing microencapsulated nanocapsules. Feret’s diameter was determined to be 2.6 ± 1.8 µm and 3.1 ± 1.9 µm for Man (control) and Man/LNC microparticles, respectively. Further studies are underway in order to optimise both the nanoplatform and the dry powder formulation.
  • Metabolic fingerprinting of gilthead seabream (Sparus aurata) liver to track interactions between dietary factors and seasonal temperature variations
    Publication . Silva, Tomé S.; Costa, Ana M. Rosa da; Conceição, L. E. C.; Dias, Jorge P.; Rodrigues, Pedro; Richard, Nadège
    Farmed gilthead seabream is sometimes affected by a metabolic syndrome, known as the "winter disease", which has a significant economic impact in the Mediterranean region. It is caused, among other factors, by the thermal variations that occur during colder months and there are signs that an improved nutritional status can mitigate the effects of this thermal stress. For this reason, a trial was undertaken where we assessed the effect of two different diets on gilthead seabream physiology and nutritional state, through metabolic fingerprinting of hepatic tissue. For this trial, four groups of 25 adult gilthead seabream were reared for 8 months, being fed either with a control diet (CTRL, low-cost commercial formulation) or with a diet called "Winter Feed" (WF, high-cost improved formulation). Fish were sampled at two time-points (at the end of winter and at the end of spring), with liver tissue being taken for FT-IR spectroscopy. Results have shown that seasonal temperature variations constitute a metabolic challenge for gilthead seabream, with hepatic carbohydrate stores being consumed over the course of the inter-sampling period. Regarding the WF diet, results point towards a positive effect in terms of performance and improved nutritional status. This diet seems to have a mitigating effect on the deleterious impact of thermal shifts, confirming the hypothesis that nutritional factors can affect the capacity of gilthead seabream to cope with seasonal thermal variations and possibly contribute to prevent the onset of "winter disease".
  • Dual antibiotherapy of tuberculosis mediated by inhalable locust bean gum microparticles
    Publication . Rodrigues, Susana; Alves, Ana D.; Cavaco, Joana S.; Pontes, Jorge Filipe; Guerreiro, Filipa; Rosa Da Costa, Ana; Buttini, Francesca; Grenha, Ana
    Despite the existence of effective oral therapy, tuberculosis remains a deadly pathology, namely because of bacterial resistance and incompliance with treatments. Establishing alternative therapeutic approaches is urgently needed and inhalable therapy has a great potential in this regard. As pathogenic bacteria are hosted by alveolar macrophages, the co-localisation of antitubercular drugs and pathogens is thus potentiated by this strategy. This work proposes inhalable therapy of pulmonary tuberculosis mediated by a single locust bean gum (LBG) formulation of microparticles associating both isoniazid and rifabutin, complying with requisites of the World Health Organisation of combined therapy. Microparticles were produced by spray-drying, at LBG/INH/RFB mass ratio of 10/1/0.5. The aerodynamic characterisation of microparticles revealed emitted doses of more than 90% and fine particle fraction of 38%, thus indicating the adequacy of the system to reach the respiratory lung area, thus partially the alveolar region. Cytotoxicity results indicate moderate toxicity (cell viability around 60%), with a concentration-dependent effect. Additionally, rat alveolar macrophages evidenced preferential capture of LBG microparticles, possibly due to chemical composition comprising mannose and galactose units that are specifically recognised by macrophage surface receptors. (C) 2017 Elsevier B.V. All rights reserved.
  • Temporal metabolic profiling of theQuercus suber-Phytophthora cinnamomisystem by middle-infrared spectroscopy
    Publication . Hardoim, P.R.; Guerra, Rui Manuel Farinha das Neves; Costa, Ana M. Rosa da; Serrano, M. S.; Sánchez, M. E.; Coelho, A. C.
    The oomycete Phytophthora cinnamomi is an aggressive plant pathogen, detrimental to many ecosystems including cork oak (Quercus suber) stands, and can inflict great losses in one of the greatest ‘hotspots’ for biodiversity in the world. Here, we applied Fourier transform-infrared (FT-IR) spectroscopy combined with chemometrics to disclose the metabolic patterns of cork oak roots and P. cinnamomi mycelium during the early hours of the interaction. As early as 2 h post-inoculation (hpi), cork oak roots showed altered metabolic patterns with significant variations for regions associated with carbohydrate, glycoconjugate and lipid groups when compared to mockinoculated plants. These variations were further extended at 8 hpi. Surprisingly, at 16 hpi, the metabolic changes in inoculated and mock-inoculated plants were similar, and at 24 hpi, the metabolic patterns of the regions mentioned above were inverted when compared to samples collected at 8 hpi. Principal component analysis of the FT-IR spectra confirmed that the metabolic patterns of inoculated cork oak roots could be readily distinguished from those of mock-inoculated plants at 2, 8 and 24 hpi, but not at 16 hpi. FT-IR spectral analysis from mycelium of P. cinnamomi exposed to cork oak root exudates revealed contrasting variations for regions associated with protein groups at 16 and 24 h post-exposure (hpe), whereas carbohydrate and glycoconjugate groups varied mainly at 24 hpe. Our results revealed early alterations in the metabolic patterns of the host plant when interacting with the biotrophic pathogen. In addition, the FTIR technique can be successfully applied to discriminate infected cork oak plants from mock-inoculated plants, although these differences were dynamic with time. To a lesser extent, the metabolic patterns of P. cinnamomi were also altered when exposed to cork oak root exudates.
  • N,N '-dimethyl-N,N '-dicyclohexylsuccinamide: A novel molecule for the separation and recovery of Pd(II) by liquid-liquid extraction
    Publication . Costa, Maria Clara; Assunção, Ana; Almeida, Rúben; Rosa da Costa, Ana; Nogueira, Carlos; Paiva, Ana Paula
    N,N'-dimethyl-N,N'-dicyclohexylsuccinamide (DMDCHSA) is investigated as a potential molecule for the liquid-liquid extraction of Pd(II) from chloride solutions for the first time. The effect of several parameters on Pd(II) extraction, such as the contact period between both phases, hydrochloric acid, extractant and hydrogen ion concentrations, is evaluated. Pd(II) extraction equilibrium is very fast (30 s) and the extraction percentage (%E) increases with the HCI concentration in the aqueous phases, being higher than 60% for [HCl] > 5 M. The loading capacity of DMDCHSA for Pd(II) is reasonable (molar ratio extractant/metal higher than 16). Several stripping agents (e.g. distilled water, 1 M HCl, seawater and 20 g/L chloride solution as NaCl) were successfully used to transfer Pd(II) to a new aqueous phase, and data obtained from five successive extraction-stripping cycles suggest a good DMDCHSA stability pattern. Attempts to replace 1,2-dichloroethane (1,2-DCE) by commercial and more environmentally friendly diluents showed much worse %E for Pd(II). Selectivity tests with binary, ternary and more complex metal ion solutions were carried out to evaluate the performance of DMDCHSA towards Pd(II) recovery from 6 M HCl, when in presence of Pt(IV), Fe(III), Zn(II), Al(III) and Ce(III), metal ions usually present in solutions that may result from the hydrometallurgical treatment of spent automobile catalytic converters. It was generally observed that the additional metal ions do not affect the recovery of Pd(II) by DMDCHSA, although Fe(III) and Pt(IV) were co-extracted in a great extent. A solvent extraction (SX) scheme is proposed, based on a previous separation of Fe(III) with tributylphosphate (TBP) and on the selective and sequential stripping of Pt(IV) and Pd(II) from the loaded DMDCHSA with 0.01 M thiourea in 0.5 M HCI and seawater, respectively. The dependence of the Pd(II) distribution ratios on DMDCHSA and acidity, complemented with UV-Visible spectroscopy data, points out to DMDCHSA:Pd(II) extracted species with a 2:1 molar ratio and suggests the occurrence of an outer-sphere ion pair reaction, in which both [PdCl4](2-) and HCI are extracted.
  • One-minute and green synthesis of magnetic iron oxide nanoparticles assisted by design of experiments and high energy ultrasound: Application to biosensing and immunoprecipitation
    Publication . Pérez-Beltrán, Christian Hazael; Jose Garcia-Guzman, Juan; Ferreira, Bibiana; Estevez-Hernandez, Osvaldo; Lopez-Iglesias, David; Cubillana-Aguilera, Laura; Link, Wolfgang; Stanica, N.; Rosa Da Costa, Ana; Maria Palacios-Santander, Jose
    The present study is focused on the ultrafast and green synthesis, via the co-precipitation method, of magnetic nanoparticles (MNPs) based on iron oxides using design of experiments (DOE) and high energy sonochemical approach, considering two main factors: amplitude (energy) of the ultrasound probe and sonication time. The combination of these techniques allowed the development of a novel one-minute green synthesis, which drastically reduced the amount of consumed energy, solvents, reagents, time and produced residues. This green sonochemical synthesis permitted to obtain mean particle sizes of 11 ? 2 nm under the optimized conditions of amplitude = 40% (2826 J) and time = 1 min. Their composition, structure, size, morphology and magnetic properties were assessed through X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning and transmission electron microscopy (SEM & TEM), and vibrating sample magnetometry (VSM). The characterization results indicate the proper formation of MNPs, and the correct functionalization of MNPs with different coating agents. The functionalized MNPs were used as: i) biosensor, which could detect mercury in water in the range of 0.030?0.060 ppm, and ii) support onto which polyclonal antibodies were anchored and successfully bound to an osteosarcoma cell line expressing the target protein (TRIB2-GFP), as part of an immunoprecipitation assay.
  • Ligand size polydispersity effect on SSCP signal interpretation
    Publication . Rocha, Luciana S.; Botero, Wander G.; Alves, Nuno G.; Moreira, José; Costa, Ana M. Rosa da; Pinheiro, J. P.
    The present study aims to establish unambiguously the conditions required for the validity of the average diffusion (D) approximation in fully labile systems with significant ligand size polydispersity. The average diffusion coefficient is a key parameter in mass transfer that affects signal interpretation in dynamic electroanalytical techniques. To achieve this goal, the binding of Cd(II) and Pb(II) to binary and ternary mixtures containing chemically homogenous (PSS)n-COOH polymers (ligand excess conditions were required) of different sizes (4, 10 and 30 KDa) was evaluated. It was experimentally evidenced that the average diffusion coefficient (D), can indeed be computed as the weighted average of several metal-polymer complexes of diverse sizes.