Loading...
10 results
Search Results
Now showing 1 - 10 of 10
- Single and multi-objective genetic programming design for B-spline neural networks and neuro-fuzzy systemsPublication . Cabrita, Cristiano Lourenço; Ruano, Antonio; Fonseca, C. M.The design phase of B-spline neural networks and neuro-fuzzy systems is a highly computationally complex task. Existent heuristics, namely the ASMOD algorithm, have been found to be highly dependent on the initial conditions employed. A Genetic Programming approach is proposed, which produces an efficient topology search, obtaining additionally more consistent solutions. The facility to incorporate a multi-objective approach to the GP algorithm is exploited, enabling the designer to obtain better conditioned models, and more adequate for their intended use.
- Genetic programming and bacterial algorithm for neural networks and fuzzy systems designPublication . Cabrita, Cristiano Lourenço; Botzheim, J.; Ruano, Antonio; Kóczy, László T.In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.
- Genetic programming and bacterial algorithm for neural networks and fuzzy systems designPublication . Cabrita, Cristiano Lourenço; Botzheim, J.; Ruano, Antonio; Kóczy, László T.In the field of control systems it is common to use techniques based on model adaptation to carry out control for plants for which mathematical analysis may be intricate. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this line, this paper gives a perspective on the quality of results given by two different biologically connected learning algorithms for the design of B-spline neural networks (BNN) and fuzzy systems (FS). One approach used is the Genetic Programming (GP) for BNN design and the other is the Bacterial Evolutionary Algorithm (BEA) applied for fuzzy rule extraction. Also, the facility to incorporate a multi-objective approach to the GP algorithm is outlined, enabling the designer to obtain models more adequate for their intended use.
- Genetic and bacterial programming for B-spline neural networks designPublication . Ruano, Antonio; Botzheim, J.; Cabrita, Cristiano Lourenço; Kóczy, László T.The design phase of B-spline neural networks is a highly computationally complex task. Existent heuristics have been found to be highly dependent on the initial conditions employed. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this paper, the Bacterial Programming approach is presented, which is based on the replication of the microbial evolution phenomenon. This technique produces an efficient topology search, obtaining additionally more consistent solutions.
- B-spline and neuro-fuzzy models design with function and derivative equalitiesPublication . Cabrita, Cristiano Lourenço; Ruano, AntonioThe design of neuro-fuzzy models is still a complex problem, as it involves not only the determination of the model parameters, but also its structure. Of special importance is the incorporation of a priori information in the design process. In this paper two known design algorithms for B-spline models will be updated to account for function and derivatives equality restrictions, which are important when the neural model is used for performing single or multi-objective optimization on-line.
- Neuro-fuzzy modelling of a plant growth in a hydroponic greenhousePublication . Kazheunikau, M.; Ferreira, P. M.; Ruano, AntonioThis paper deals with the modeling of dry matter production in a hydroponic greenhouse. Identification techniques are applied for the modeling, based on fuzzy logic and B-spline neural networks, for two growth models. For the design of these models subtractive clustering, the ASMOD algorithm and genetic programming are employed and compared. The developed approach has been successfully applied for the prediction of tomato growth.
- B-spline and neuro-fuzzy models design with function and derivative equalitiesPublication . Ruano, Antonio; Cabrita, Cristiano LourençoThe design of neuro-fuzzy models is still a complex problem, as it involves not only the determination of the model parameters, but also its structure. Of special importance is the incorporation of a priori information in the design process. In this paper two known design algorithms for B-spline models will be updated to account for function and derivatives equality restrictions, which are important when the neural model is used for performing single or multi-objective optimization on-line.
- Genetic and bacterial programming for B-Spline neural networks designPublication . Botzheim, J.; Cabrita, Cristiano Lourenço; Kóczy, László T.; Ruano, AntonioThe design phase of B-spline neural networks is a highly computationally complex task. Existent heuristics have been found to be highly dependent on the initial conditions employed. Increasing interest in biologically inspired learning algorithms for control techniques such as Artificial Neural Networks and Fuzzy Systems is in progress. In this paper, the Bacterial Programming approach is presented, which is based on the replication of the microbial evolution phenomenon. This technique produces an efficient topology search, obtaining additionally more consistent solutions.
- Training neuro-fuzzy models using evolution based algorithmsPublication . Cabrita, Cristiano Lourenço; Ruano, Antonio; Fonseca, C. M.The normal design process for neural networks or fuzzy systems involve two different phases: the determination of the best topology, which can be seen as a system identification problem, and the determination of its parameters, which can be envisaged as a parameter estimation problem. This latter issue, the determination of the model parameters (linear weights and interior knots) is the simplest task and is usually solved using gradient or hybrid schemes. The former issue, the topology determination, is an extremely complex task, especially if dealing with real-world problems.
- Nonlinear identification of aircraft gas-turbine dynamicsPublication . Ruano, Antonio; Fleming, P. J.; Teixeira, C. A.; Rodriguez-Vázquez, K.; Fonseca, C. M.Identi cation results for the shaft-speed dynamics of an aircraft gas turbine, under normal operation, are presented. As it has been found that the dynamics vary with the operating point, nonlinear models are employed. Two di7erent approaches are considered: NARX models, and neural network models, namely multilayer perceptrons, radial basis function networks and B-spline networks. A special attention is given to genetic programming, in a multiobjective fashion, to determine the structure ofNARMAX and B-spline models.