Repository logo
 
Loading...
Profile Picture
Person

Gutierrez-Merino, Carlos

Search Results

Now showing 1 - 3 of 3
  • Decavanadate toxicity effects following in vivo administration
    Publication . S. Soares, Sandra; Gutiérrez-Merino, Carlos; Aureliano, M.
    Very few in vivo animal studies involving vanadium consider the contribution of decavanadate (V10) to vanadium biological effects. Recently, it is been suggested that decameric vanadate may not completely fall apart into other vanadate oligomers before induces changes in cell homeostasis, namely in several stress markers. An acute exposure of different fish species (Halobactrachus didactilus, Lusitanian toadfish, and Sparus aurata, gilthead seabream) to decavanadate, but not to other vanadate oligomers, induced different effects than vanadate in catalase activity, glutathione content, lipid peroxidation, mitochondrial superoxide anion production and vanadium accumulation, whereas both solutions seem to equally depress reactive oxygen species (ROS) production as well as total intracellular reducing power. Vanadium is accumulated in Sparus aurata mitochondria in particular when decavanadate is administrated. Moreover, exposure to different vanadate oligomers induced morphological changes in fish cardiac, hepatic and renal tissues causing tissues lesions in the liver and kidney, but not cardiac tissue. Nevertheless, the results highlight that different vanadate oligomers seem to follow, not only in vitro but also in vivo, different pathways, with different targets and effects. These recent findings, that are now summarized, point out the decameric vanadate species contributions to in vivo effects induced by vanadium in biological systems.
  • Vanadate oligomers: in vivo effects in hepatic vanadium accumulation and stress markers
    Publication . Gândara, Ricardo M. C.; S. Soares, Sandra; Martins, H.; Gutiérrez-Merino, Carlos; Aureliano, M.
    The formation of vanadate oligomeric species is often disregarded in studies on vanadate effects in biological systems, particularly in vivo, even though they may interact with high affinity with many proteins. We report the effects in fish hepatic tissue of an acute intravenous exposure (12, 24 h and 7 days) to two vanadium(V) solutions, metavanadate and decavanadate, containing different vanadate oligomers administered at sub-lethal concentration (5 mM; 1 mg/kg). Decavanadate solution promotes a 5-fold increase (0.135 ± 0.053 lg V 1 dry tissues) in the vanadium content of the mitochondrial fraction 7 days after exposition, whereas no effects were observed after metavanadate solution administration. Reduced glutathione (GSH) levels did not change and the overall reactive oxygen species (ROS) production was decreased by 30% 24 h after decavanadate administration, while for metavanadate, GSH levels increased 35%, the overall ROS production was depressed by 40% and mitochondrial superoxide anion production decreased 45%. Decavanadate intoxication did not induce changes in the rate of lipid peroxidation till 12 h, but later increased 80%, which is similar to the increase observed for metavanadate after 24 h. Decameric vanadate administration clearly induces different effects than the other vanadate oligomeric species, pointing out the importance of taking into account the different vanadate oligomers in the evaluation of vanadium(V) effects in biological systems.
  • Effects of reactive oxygen and nitrogen species on actomyosin and their implications for muscle contractility
    Publication . Tiago, Teresa; Aureliano, M.; Gutiérrez-Merino, Carlos
    Experimental evidence accumulated during recent years is pointing out that numerous pathological conditions in skeletal and cardiac muscle are associated with an oxidative stress-induced muscle injury. Additionally, it has been postulated that several oxidants can directly alter contractile function by oxidative modification of the myofibril proteins – actin and myosin. Peroxynitrite (ONOO-), a potent biological oxidizing agent formed in the nearly instantaneous reaction of nitric oxide with superoxide anion, is increasingly recognized as playing a major role in the skeletal and cardiac muscle dysfunction. This is supported by detection of 3-nitrotyrosine, a protein modification produced by the reaction of peroxynitrite with tyrosine, on skeletal and cardiac muscle proteins during aging or in diseases associated with myocardial inflammation or ischemia/reperfusion insults. Although some studies point to a correlation of protein nitration with functional and structural modifications, the mechanism by which peroxynitrite may impair muscle contractility remains far from being elucidated. In the present review we address the role of reactive oxygen and nitrogen species on the structural and functional impairment of actomyosin ATPase activity and their implications for muscle contraction with particular emphasis on the oxidative modifications promoted by peroxynitrite on actin and myosin.