Repository logo
 
Loading...
Profile Picture
Person

Horta Jung, Marília

Search Results

Now showing 1 - 6 of 6
  • Six new Phytophthora species from ITS Clade 7a including two sexually functional heterothallic hybrid species detected in natural ecosystems in Taiwan
    Publication . Jung, Thomas; Horta, Marília; Scanu, B.; Seress, D.; Kovacs, G. M.; Maia, Cristiana; Perez-Sierra, A.; Chang, T. -T.; Chandelier, A.; Heungens, K.; van Poucke, K.; Abad-Campos, P.; Leon, M.; Cacciola, S. O.; Bakonyi, J.
    During a survey of Phytophthora diversity in natural ecosystems in Taiwan six new species were detected. Multigene phylogeny based on the nuclear ITS, beta-tubulin and HSP90 and the mitochondrial cox1 and NADH1 gene sequences demonstrated that they belong to ITS Clade 7a with P. europaea, P. uniformis, P. rubi and P. cambivora being their closest relatives. All six new species differed from each other and from related species by a unique combination of morphological characters, the breeding system, cardinal temperatures and growth rates. Four homothallic species, P. attenuata, P. flexuosa, P. formosa and P. intricata, were isolated from rhizosphere soil of healthy forests of Fagus hayatae, Quercus glandulifera, Q. tarokoensis, Castanopsis carlesii, Chamaecyparis formosensis and Araucaria cunninghamii. Two heterothallic species, P. xheterohybrida and P. xincrassata, were exclusively detected in three forest streams. All P. xincrassata isolates belonged to the A2 mating type while isolates of P. xheterohybrida represented both mating types with oospore abortion rates according to Mendelian ratios (4-33 %). Multiple heterozygous positions in their ITS, beta-tubulin and HSP90 gene sequences indicate that P. xheterohybrida, P. xincrassata and P. cambivora are interspecific hybrids. Consequently, P. cambivora is re-described as P. xcambivora without nomenclatural act. Pathogenicity trials on seedlings of Castanea sativa, Fagus sylvatica and Q. suber indicate that all six new species might pose a potential threat to European forests.
  • A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing
    Publication . Pereira-Leal, José B.; Abreu, Isabel A.; Alabaça, Cláudia S.; Almeida, Maria H.; Almeida, Paulo; Almeida, Tânia; Amorim, Maria I.; Araújo, Susana; Azevedo, Herlânder; Badia, Aleix; Batista, Dora; Bohn, Andreas; Capote, Tiago; Carrasquinho, Isabel; Chaves, Inês; Coelho, A. C.; Costa, Maria M. R.; Costa, Rita; Cravador, A.; Egas, Conceição; Faro, Carlos; Fortes, Ana M.; Fortunato, Ana S.; Gaspar, Maria J.; Gonçalves, Sónia; Graça, José; Horta, Marília; Inácio, Vera; Leitão, J. M.; Lino-Neto, Teresa; Marum, Liliana; Matos, José; Mendonça, Diogo; Miguel, Andreia; Miguel, Célia M.; Morais-Cecílio, Leonor; Neves, Isabel; Nóbrega, Filomena; Oliveira, Maria M.; Oliveira, Rute; Pais, Maria S.; Paiva, Jorge A.; Paulo, O. S.; Pinheiro, Miguel; Raimundo, João A. P.; Ramalho, J. C.; Ribeiro, Ana I.; Ribeiro, Teresa; Rocheta, Margarida; Rodrigues, Ana I.; Rodrigues, José C.; Saibo, Nelson J. M.; Santo, Tatiana; Santos, Ana M.; Sá-Pereira, Paula; Sebastiana, Mónica; Simões, Fernanda; Sobral, Rómulo S.; Tavares, Rui; Teixeira, Rita; Varela, Carolina; Veloso, Maria M.; Ricardo, Cândido P. P.
    Background: Cork oak (Quercus suber) is one of the rare trees with the ability to produce cork, a material widely used to make wine bottle stoppers, flooring and insulation materials, among many other uses. The molecular mechanisms of cork formation are still poorly understood, in great part due to the difficulty in studying a species with a long life-cycle and for which there is scarce molecular/genomic information. Cork oak forests are of great ecological importance and represent a major economic and social resource in Southern Europe and Northern Africa. However, global warming is threatening the cork oak forests by imposing thermal, hydric and many types of novel biotic stresses. Despite the economic and social value of the Q. suber species, few genomic resources have been developed, useful for biotechnological applications and improved forest management. Results: We generated in excess of 7 million sequence reads, by pyrosequencing 21 normalized cDNA libraries derived from multiple Q. suber tissues and organs, developmental stages and physiological conditions. We deployed a stringent sequence processing and assembly pipeline that resulted in the identification of ~159,000 unigenes. These were annotated according to their similarity to known plant genes, to known Interpro domains, GO classes and E.C. numbers. The phylogenetic extent of this ESTs set was investigated, and we found that cork oak revealed a significant new gene space that is not covered by other model species or EST sequencing projects. The raw data, as well as the full annotated assembly, are now available to the community in a dedicated web portal at http://www.corkoakdb.org. Conclusions: This genomic resource represents the first trancriptome study in a cork producing species. It can be explored to develop new tools and approaches to understand stress responses and developmental processes in forest trees, as well as the molecular cascades underlying cork differentiation and disease response.
  • In vitro and in vivo quantification of elicitin expression in Phytophthora cinnamomi
    Publication . Horta, Marília; Sousa, Nelson; Coelho, A. C.; Neves, D.; Cravador, A.
    The differential expression of four Phytophthora cinnamomi elicitin genes was analysed by Real Time RT-PCR. In in vitro cultures, the a-cinnamomin gene showed the highest level of expression, the b-cinnamomin gene (b-cin) was the most inducible, and the HAE transcripts were in low abundance. Transcription of all the elicitins was active during the active growth of the pathogen when infecting cork oak (Quercus suber) roots, and as host colonization progressed, the level of b-cin expression fell, while that of a-cin rose. In an antisense transgenic strain, the silencing of b-cin also negatively affected the expression of other elicitin genes in the cluster. The reduced in planta growth of the b-cin knock-out is related to the altered pattern of elicitin gene expression, supporting the idea that one of the functions of elicitins is related, directly or indirectly, with pathogenesis.
  • Quercus suber – P. cinnamomi interaction: hypothetical molecular mechanism model
    Publication . Coelho, A. C.; Horta, Marília; Ebadzad, G.; Cravador, A.
    Phytophthora cinnamomi Rands is involved in the decline and mortality of Quercus suber L. and Quercus ilex L. in Southern Europe, in particular in Portugal and Spain. The presence and spread of P. cinnamomi in these regions is a severe threat to these oak ecosystems leading to expectable severe consequences for the production of cork and acorns in the near future. Molecular mechanisms underlying oomycete-host interactions are poorly understood. As a first step to identify transcripts involved in the Quercus suber – Phytophthora cinnamomi interaction, we applied complementary deoxyribonucleic acidamplified fragment length polymorphism (cDNA-AFLP) methodology to cork oak seedlings infected with zoospores or mycelium of P. cinnamomi. Forty-four Quercus suber genes that were differentially expressed when exposed to Phytophthora cinnamomi were selected and sequenced. Several of these genes were fully sequenced and the deduced aminoacid sequences showed consistent homology with proteins involved in the defence mechanism of other plant species. These findings led to the design of a simplified hypothetical model that illustrates the initial events of the interaction between Q. suber and P. cinnamomi.
  • Involvement of a cinnamyl alcohol dehydrogenase of Quercus suber in the defence response to infection by Phytophthora cinnamomi
    Publication . Coelho, A. C.; Horta, Marília; Neves, D.; Cravador, A.
    A gene encoding a potential NADPH-dependent cinnamyl alcohol dehydrogenase (QsCAD1) (GenBank accession no: AY362455) was identified in Quercus suber (cork oak). Its complete cDNA sequence was obtained by RACE-PCR, starting from total RNA extracted from roots of seedlings of Q. suber, infected with Phytophthora cinnamomi, the causal agent of the decline and sudden death of Q. suber and Quercus ilex subsp. rotundifolia in the Iberian Peninsula. Sequence information to perform the RACE-PCR was acquired from a polymorphic fragment (C9), specifically identified by cDNA-AFLP, in leaves of epicormic shoots of a cork oak tree that suffered sudden death. RT-PCR and hybridization analysis showed that the QsCAD1 gene is up-regulated in root seedlings of Q. suber infected with P. cinnamomi. QsCAD1 has a high structural homology with VR-ERE (Vigna radiata), an enzyme that detoxifies eutypine (produced by Eutypa lata, the causal agent of eutypa dieback of grapevines), to eutypinol, and with QrCAD1 (Q. ilex subsp. rotundifolia), EgCAD1 (Eucalyptus gunnii), MdCAD1 (Malus x domestica). Taken together, these results suggest that these enzymes, and namely QsCAD1 belong to a new group of CAD potentially involved in deactivation of toxins produced by phytopathogens.
  • Involvement of the beta-cinnamomin elicitin in infection and colonisation of cork oak roots by Phytophthora cinnamomi
    Publication . Cravador, A.; Horta, Marília; Caetano, P.; Medeira, C.; Maia, I.
    The virulence of two wild type (PA45 and PA37) and two genetically modified (13C: hygromycin resistant; FATSS: hygromycin resistant and β-cin knock-down) Phytophthora cinnamomi strains towards cork oak (Quercus suber) was assessed via a quantitative evaluation of disease symptoms arising from a soil infestation assay, and by a istological analysis of root colonization. Comparison of virulence, as expressed by symptom severity, resulted in the following ranking: highly virulent (wild type strains), medium virulence (strain 13C) and weakly virulent (FATSS). Both transgenic strains were compromised in their virulence, as expressed by symptom severity, but strain 13C was much less affected than FATSS. Microscopic observation showed that the FATSS strain was unable to effectively invade the root, while 13C and the two wild type strains were all able to rapidly colonize the whole root, including the vascular tissue. These results strengthen the notion that elicitins are associated, either directly or indirectly, with the infection process of Phytophthora.