Repository logo
 

Search Results

Now showing 1 - 10 of 12
  • Optimizing diets to decrease environmental impact of Nile tilapia (Oreochromis niloticus) production
    Publication . Teodósio, Rita; Engrola, Sofia; Colen, R.; Masagounder, Karthik; Aragão, Cláudia
    Aquaculture is one of the most thriving animal production sectors, and Nile tilapia (Oreochromis niloticus) farming represents 8% of total finfish culture. However, the industry sustainability depends on the development of cost‐effective and environmental friendly feeds. This study aimed to reduce dietary protein levels in diets for juvenile tilapia and to minimize diet environmental impact while maximizing biological efficiency. A growth trial was performed using five isoenergetic plant protein‐based diets with decreasing levels of crude protein: 360, 340, 320, 300 and 280 g/kg diet (D360, D340, D320, D300 and D280, respectively). Dietary protein utilization was assessed by metabolic trials using a radiolabelled amino acid mixture. Tilapia in all treatments showed similar growth performance and feed intake. Feed conversion ratio was significantly higher in fish fed the D280 than the D360 diet, while no differences were found for other treatments. Protein retention was significantly higher in tilapia fed the D300 than the D360 diet. Amino acid catabolism increased in fish fed the D360 diet, though without significant differences in muscle amino acid retention. This study demonstrates that dietary protein levels can be reduced to 300 g/kg diet without hindering tilapia growth and feed conversion ratio, while reducing environmental nitrogen losses.
  • The effect of tank cover on welfare of farmed Nile tilapia
    Publication . Saraiva, João L.; Nogueirinha, Margarida; Teodósio, Rita; Aragão, Cláudia; Engrola, Sofia; Arechavala Lopez, Pablo
    Welfare in aquaculture is a pressing topic. One of the main measures to improve the life of farmed fish is implementing environmental enrichment, which can include the addition of structural covers to rearing tanks. Here we test the effects of tank covers (fully covered, 50 % covered and uncovered) in an all-male population (N = 75 tagged individuals: 5 individuals per tank, 5 tanks per treatment) of farmed Nile tilapia using behavioural and physiological welfare indicators. Video recordings were performed over 21 days to evaluate overall swimming (swim bursts, freezing on the bottom or hovering in the water column) and aggression events (bites and chases). At the end of the experiment, blood was collected to assess circulating cortisol. Results showed a clearly lower welfare in the partially covered tanks regarding behavioural and physiological variables. The present study highlights the need to correctly study 1) the ethology of the farmed species and 2) the enrichment strategy to be implemented, before any measure is taken. While environmental enrichment is undoubtedly a much needed area of research and a promising solution to improve the welfare of farmed fish, a proper ethological assessment must be made a priori to avoid detrimental effects of poorly devised approaches.
  • Amino acid metabolism in gilthead seabream is affected by the dietary protein to energy ratios
    Publication . Teodósio, Rita; Aragão, Cláudia; Conceicao, Luis; Dias, Jorge; Engrola, Sofia
    The dietary protein to energy ratio (P/E) has proven to influence protein utilization and/or growth in several fish species. This study intended to unravel the bioavailability and metabolic fate of lysine and methionine in gilthead seabream (Sparus aurata) juveniles fed plant diets with different P/E ratios. Seabream juveniles were fed two isonitrogenous diets (45% crude protein) differing in crude lipids (20 and 14%): LowP/E (P/E ratio=20.0 mg protein kJ-1) and HighP/E (P/E ratio=21.4 mg protein kJ-1). After three weeks, fish (11.6 +/- 4.3 g) were tube-fed the respective diet labelled with C-14-protein (L-amino acid mixture), C-14-lysine, or C-14-methionine. Protein, lysine, and methionine utilization were determined based on the proportion of C-14-amino acid evacuated, retained in the free or protein-bound fraction of liver and muscle, or catabolized. This study revealed that a decrease in P/E ratio resulted in lower amino acid evacuation (p < 0.05), contributing to a more efficient amino acid uptake. Results indicate that amino acids are retained as protein in the liver and not only temporarily available in the free pool. The amount of free amino acids retained in the muscle of LowP/E fed fish was significantly higher than in HighP/E fish (p < 0.05) due to a simultaneous higher retention of lysine and methionine, without affecting the overall protein retention. Methionine catabolism was significantly lower than lysine or protein independently of the P/E ratio (p < 0.05), reinforcing that this amino acid is preferentially spared for metabolic functions and not used as energy source. In contrast, increasing the dietary P/E ratio decreased lysine catabolism and increased its availability for growth. The bioavailability and metabolism of individual amino acids should be considered when optimizing P/E ratios in diets for gilthead seabream juveniles. Formulating diets with optimum P/E ratios will improve diet utilization and fish performance.
  • Metabolic and nutritional responses of Nile tilapia juveniles to dietary methionine sources
    Publication . Teodósio, Rita; Engrola, Sofia; Cabano, Miguel; Colen, R.; Masagounder, Karthik; Raquel Cêa de Aragão Teixeira, Cláudia
    Commercial diets for tilapia juveniles contain high levels of plant protein sources. Soybean meal has been utilised due to its high protein content; however, soy-based diets are limited in methionine (Met) and require its supplementation to fulfil fish requirements. DL-Methinone (DL-Met) and Ca bis-methionine hydroxyl analogue (MHA-Ca) are synthetic Met sources supplemented in aquafeeds, which may differ in biological efficiency due to structural differences. The present study evaluated the effect of both methionine sources on metabolism and growth of Nile tilapia. A growth trial was performed using three isonitrogenous and isoenergetic diets, containing plant ingredients as protein sources: DLM and MHA diets were supplemented on equimolar levels of Met, while REF diet was not supplemented. Hepatic free Met and one-carbon metabolites were determined in fish fed for 57 d. Metabolism of DL-Met and MHA was analysed by an in vivo time-course trial using 14C-labelled tracers. Only DLMet supplementation significantly increased final body weight and improved feed conversion and protein efficiency ratios compared with the REF diet. Our findings indicate that Met in DLM fed fish follows the transsulphuration pathway, while in fish fed MHA and REF diets it is reme thylated. The in vivo trial revealed that 14C-DL-Met is absorbed faster and more retained than 14C-MHA, resulting in a greater availability of free Met in the tissues when fish is fed with DLM diet. Our study indicates that dietary DL-Met supplementation improves growth performance and N retention, and that Met absorption and utilisation are influenced by the dietary source in tilapia juveniles.
  • Dietary protein complexity modulates growth, protein utilisation and the expression of protein digestion-related genes in Senegalese sole larvae
    Publication . Canada, Paula; Conceicao, Luis E. C.; Mira, Sara; Teodósio, Rita; Fernandes, Jorge M. O.; Barrios, Carmen; Millan, Francisco; Pedroche, Justo; Valente, Luisa M. P.; Engrola, Sofia
    Given its complex metamorphosis and digestive system ontogeny, Senegalese sole larvae capacity to digest and utilize dietary protein is likely to change throughout development. In the present study, we hypothesized that the manipulation of dietary protein complexity may affect Senegalese sole larvae capacity to digest, absorb and retain protein during metamorphosis, as well as the mRNA expression of genes encoding for the precursors of proteolytic enzymes of the digestive tract and the enterocyte peptide transporter PepT1, which may have further impact on somatic growth. Three diets were formulated using approximately the same practical ingredients, except for the main protein source. The Intact diet protein content was mostly based on intact plant protein where the target peptide molecular weight (MW) would be > 70 kDa. The PartH diet protein fraction was mostly based on a protein hydrolysate with a high content of 5-70 kDa peptides. The HighH diet protein fraction was mostly based on a protein hydrolysate with a high content of 5 kDa peptides. A growth trial was performed with larvae reared at 19 degrees C under a co-feeding regime from mouth opening. The transcription of pga, tryp1c, ialp, ampn and pepT1 (encoding respectively for PepsinogenA, Trypsinogen1C, Intestinal alkaline phosphatase, Aminopeptidase N and for the enterocyte peptide transporter 1) was quantified by qPCR, during the metamorphosis climax (16 DAH) and after the metamorphosis was completed (28 DAH). An in vivo method of controlled tube-feeding was used to assess the effect on the larvae capacity to utilize polypeptides with different MW (1.0 and 7.2 kDa) representing a typical peptide MW of each of the hydrolysates included in the diets. The PartH diet stimulated growth in metamorphosing larvae (16 DAH), whereas the Intact diet stimulated growth after 36 DAH. The Intact diet stimulated the larvae absorption capacity for 1.0 kDa peptides at 16 DAH, which may have contributed for enhanced growth in later stages. The PartH diet stimulated the transcription of tryp1c and pept1 at 28 DAH, which seemed to reflect on increased post-larvae capacity to retain dietary 7.2 kDa polypeptides. That may indicate a possible strategy to optimize the digestion and utilisation of the PartH dietary protein, though it did not reflect into increased growth. The Intact diet promoted the transcription of pepsinogenA, which may reflect a reduced gastrointestinal transit time, which could have enhanced the dietary nutrients assimilation, ultimately improving growth. The present results suggest that, whereas pre-metamorphic sole larvae utilize better dietary protein with a moderate degree of hydrolysis, post-metamorphic sole make a greater use of intact protein.
  • A nutritional strategy to promote gilthead seabream performance under low temperatures
    Publication . Teodósio, Rita; Aragão, Cláudia; Colen, R.; Carrilho, Raquel; Dias, Jorge; Engrola, Sofia
    Gilthead seabream (Sparus aurata) is vulnerable to low water temperature, which may occur in the Southern Europe and Mediterranean region during Winter. Fish are poikilothermic animals, therefore feed intake, digestion, metabolism and ultimately growth are affected by water temperature. This study aimed to evaluate growth performance, feed utilisation, nutrient apparent digestibility, and nitrogen losses to the environment in gilthead seabream juveniles reared under low temperature (similar to 13 degrees C). Three isolipid and isoenergetic diets were formulated: a diet similar to a commercial feed (COM) that contained 44% crude protein and 27.5% fishmeal, and two experimental diets with a lower protein content of 42% (ECO and ECOSup). In both ECO diets fishmeal inclusion was reduced (10% in ECO and 7.5% in ECOSup diet) and 15% poultry meal was included. Additionally, the ECOSup diet was supplemented with a mix of feed additives intended to promote fish growth performance and feed intake. The ECO diets presented lower production costs than the COM diet, whilst incorporating more sustainable ingredients. Gilthead seabream juveniles (+/- 154.5 g initial body weight) were randomly assigned to triplicate tanks and fed the diets for 84 days. Fish fed the ECOSup diet attained a similar final body weight than fish fed the COM diet, significantly higher than fish fed the ECO diet. ECOSup fed fish presented significantly higher hepatosomatic index than COM fed fish, most likely due to higher hepatic glycogen reserves. The viscerosomatic index of ECOSup fed fish were significantly lower compared to COM fed fish, which is a positive achievement from a consumer's point of view. ECOSup diet exhibited similar nutrient digestibility than the COM diet. Moreover, feeding fish with the ECO diets resulted in lower faecal nitrogen losses when compared to COM fed fish. The results suggest that feeding gilthead seabream with an eco-friendly diet with a mix of feed additives such as the ECOSup diet, promoted growth and minimised nitrogen losses to the environment. Nutritional strategies that ultimately promote feed intake and diet utilisation are valuable tools that may help conditioning fish to sustain growth even under low temperatures.
  • Taurine supplementation to Plant-Based Diets improves lipid metabolism in Senegalese Sole
    Publication . Raquel Cêa de Aragão Teixeira, Cláudia; Teodósio, Rita; Colen, R.; Richard, Nadège; Rønnestad, Ivar; Dias, Jorge; Conceição, Luís E. C.; Ribeiro, Laura
    Taurine is a sulphur-containing amino acid with important physiological roles and a key compound for the synthesis of bile salts, which are essential for the emulsion and absorption of dietary lipids. This study aimed to evaluate the effects of taurine supplementation to low-fishmeal diets on the metabolism of taurine, bile acids, and lipids of Senegalese sole. A fishmeal (FM) and a plant-protein-based (PP0) diet were formulated, and the latter was supplemented with taurine at 0.5 and 1.5% (diets PP0.5 and PP1.5). Diets were assigned to triplicate tanks containing 35 fish (initial weight ~14 g) for 6 weeks. Fish from the PP0 treatment presented lower taurine and bile-acid concentrations compared with the FM treatment, and a downregulation of cyp7a1 and abcb11 was observed. Triolein catabolism decreased in PP0-fed fish, resulting in increased hepatic fat content and plasma triglycerides, while no effects on plasma cholesterol were observed. Taurine supplementation to plant-based diets resulted in a higher taurine accumulation in fish tissues, increased bile-acid concentration, and upregulation of cyp7a1 and abcb11. Hepatic fat content and plasma triglycerides decreased with increasing dietary taurine supplementation. Taurine supplementation mitigated part of the negative effects of plant-based diets, leading to better lipid utilisation.
  • Modulation of dietary protein to lipid ratios for gilthead seabream on-growing during summer temperature conditions
    Publication . Aragão, Cláudia; Cabano, Miguel; Colen, R.; Teodósio, Rita; Gisbert, Enric; Dias, Jorge; Engrola, Sofia
    Gilthead seabream (Sparus aurata) tend to increase fat deposition during summer farming conditions in the Mediterranean, which may negatively affect productive performance and consumers' quality perception of the final product. Therefore, this study evaluated the impacts of protein to lipid ratios in low fishmeal/fish oil diets on growth performance, body composition, feed conversion and nutrient utilization of seabream on-grown during summer temperature conditions. The experimental diets contained low levels of fishmeal, fish oil, and crude protein (39%), differing in crude lipid content: 16% (MF diet) or 12% (LF diet). A growth trial was per-formed with seabream (initial weight: 100 & PLUSMN; 7 g) from August to October (water temperature: 23.1 & PLUSMN; 2.2 & DEG;C). A digestibility trial was also performed (at 23 & DEG;C). Key performance indicators, whole-body composition and ac-tivities of digestive enzymes were evaluated at the end of the experiment (64 days). Low dietary lipid levels negatively affected lipid, energy, and amino acid digestibility, and as a result, fish fed the LF diet presented higher nitrogen faecal losses. Still, the decrease in nutrient digestibility was not related to dietary effects on the digestive enzyme activities. The experimental diets did not compromise the activity of pancreatic, gastric, and intestinal digestive enzymes nor feed utilization, but a slight growth impairment was observed in fish fed the LF diet, probably due to the lower amino acid and lipid digestibility. However, a potential benefit of this dietary treatment towards reducing fat accumulation in seabream during summer was observed. Nevertheless, the environmental impact of the nitrogen losses during seabream on-growing should be considered when estimating the sustainability of the production. This study demonstrated that the optimisation of diet formulations should account for the environmental conditions, especially in Mediterranean aquaculture, so the economic and envi-ronmental impacts may be correctly evaluated towards a more sustainable fish production.
  • Metabolic fate is defined by amino acid nature in gilthead seabream fed different diet formulations
    Publication . Teodósio, Rita; Aragão, Cláudia; Conceição, Luís E. C.; Dias, Jorge; Engrola, Sofia
    The sustainability of the Aquaculture industry relies on optimising diets to promote nitrogen retention and maximise fish growth. The aim of this study was to assess how different dietary formulations influence the bioavailability and metabolic fate of distinct amino acids in gilthead seabream juveniles. Amino acids (lysine, tryptophan, and methionine) were selected based on their ketogenic and/or glucogenic nature. Seabream were fed practical diets with different protein (44 and 40%) and lipid contents (21 and 18%): 44P21L, 44P18L, 40P21L, and 40P18L. After three weeks of feeding, the fish were tube-fed the correspondent diet labelled with 14C-lysine, 14C-tryptophan, or 14C-methionine. The amino acid utilisation was determined based on the evacuation, retention in gut, liver, and muscle, and the catabolism of the tracer. The metabolic fate of amino acids was mainly determined by their nature. Tryptophan was significantly more evacuated than lysine or methionine, indicating a lower availability for metabolic purposes. Methionine was more retained in muscle, indicating its higher availability. Lysine was mainly catabolised, suggesting that catabolism is preferentially ketogenic, even when this amino acid is deficient in diets. This study underpins the importance of optimising diets considering the amino acids’ bioavailability and metabolic fate to maximise protein retention in fish.
  • The supplementation of a microdiet with crystalline indispensable amino-acids affects muscle growth and the expression pattern of related genes in Senegalese sole (Solea senegalensis) larvae
    Publication . Canada, Paula; Engrola, S.; Mira, Sara; Teodósio, Rita; Fernandes, Jorge M. O.; Sousa, Vera; Barriga-Negra, Lúcia; Conceicao, Luis; Valente, Luisa M. P.
    The full expression of growth potential in fish larvae largely depends on an efficient protein utilization, which requires that all the indispensable amino acids (IAAs) are provided at an optimum ratio. The effect of supplementing a practical microdiet with encapsulated crystalline-AA to correct possible IAA deficiencies was evaluated in Senegalese sole larvae. Two isonitrogenous and isoenergetic microdiets were formulated and processed to have approximately the same ingredients and proximate composition. The control diet (CTRL) was based on protein sources commonly used in the aquafeed industry. In the supplemented diet (SUP) 8% of an encapsulated fish protein hydrolysate was replaced by crystalline-AA in order to increase the dietary IAA levels. The microdiets were delivered from mouth-opening upon a co-feeding regime until 51 days after hatching (DAH). The larvae capacity to utilize protein was evaluated using an in vivo method of controlled tube-feeding during relevant stages throughout development: pre-metamorphosis (13 DAH); metamorphosis climax (19 DAH) and metamorphosis completion (25 DAH). Somatic growth was monitored during the whole trial. A possible effect on the regulation of muscle growth was evaluated through muscle cellularity and the expression of related genes (myf5, myod2, myogenin, mrf4, myhc and mstn1) at metamorphosis climax (19 DAH) and at a juvenile stage (51 DAH). The SUP diet had a negative impact on larvae somatic growth after the metamorphosis, even though it had no effect on the development of Senegalese sole larvae capacity to retain protein. Instead, changes in somatic growth may reflect alterations on muscle growth regulation, since muscle cellularity suggested delayed muscle development in the SUP group at 51 DAH. Transcript levels of key genes regulating myogenesis changed between groups, during the metamorphosis climax and at the 51 DAH. The group fed the SUP diet had lower dnmt3b mRNA levels compared to the CTRL group. Further studies are needed to ascertain whether this would possibly lead to an overall DNA hypomethylation in skeletal muscle. (C) 2016 Elsevier B.V. All rights reserved.