Repository logo
 
Loading...
Profile Picture
Person

Gonzalez-Wanguemert, Mercedes

Search Results

Now showing 1 - 5 of 5
  • Genetic differentiation of Diplodus sargus (Pisces: Sparidae) populations in the south-west Mediterranean
    Publication . González-Wangüemert, Mercedes; Pérez-Ruzafa, Á.; Marcos, C.; García-Charton, J. A.
    Allozyme analysis of tissue samples of 1249 white sea bream Diplodus sargus from five localities of the south-west Mediterranean revealed a high degree of genetic polymorphism. The observed heterozygosity ranged from 0.4182 (Cape of Palos) to 0.3138 (Tabarca). Several populations were characterized by unique alleles. Examination of the spatial structure was performed using Nei’s distances and F-statistics, and indicated genetic differences between groups. One group, which clustered Tabarca and Guardamar, could be explained by the small geographical distance between them. Mazarrón and Cape of Palos samples showed genetic divergence from other samples (Guardamar, Tabarca and Águilas) and this difference may be as a result of local current systems and larval dispersal.
  • Phylogeography of the Atlanto-Mediterranean sea cucumber Holothuria (Holothuria) mammata: the combined effects of historical processes and current oceanographical pattern
    Publication . Borrero-Perez, G. H.; Gonzalez-Wanguemert, Mercedes; Marcos, C.; Perez-Ruzafa, A.
    We assessed the genetic structure of populations of the widely distributed sea cucumber Holothuria (Holothuria) mammata Grube, 1840, and investigated the effects of marine barriers to gene flow and historical processes. Several potential genetic breaks were considered, which would separate the Atlantic and Mediterranean basins, the isolated Macaronesian Islands from the other locations analysed, and the Western Mediterranean and Aegean Sea (Eastern Mediterranean). We analysed mitochondrial 16S and COI gene sequences from 177 individuals from four Atlantic locations and four Mediterranean locations. Haplotype diversity was high (H = 0.9307 for 16S and 0.9203 for COI), and the haplotypes were closely related (p = 0.0058 for 16S and 0.0071 for COI). The lowest genetic diversities were found in the Aegean Sea population. Our results showed that the COI gene was more variable and more useful for the detection of population structure than the 16S gene. The distribution of mtDNA haplotypes, the pairwise FST values and the results of exact tests and AMOVA revealed: (i) a significant genetic break between the population in the Aegean Sea and those in the other locations, as supported by both mitochondrial genes, and (ii) weak differentiation of the Canary and Azores Islands from the other populations; however, the populations from the Macaronesian Islands, Algarve and West Mediterranean could be considered to be a panmictic metapopulation. Isolation by distance was not identified in H. (H.) mammata. Historical events behind the observed findings, together with the current oceanographic patterns, were proposed and discussed as the main factors that determine the population structure and genetic signature of H. (H.) mammata
  • Genetic differentiation and gene flow of two sparidae subspecies, Diplodus sargus sargus and Diplodus sargus cadenati in Atlantic and south-west Mediterranean populations
    Publication . González-Wangüemert, Mercedes; Pérez-Ruzafa, Á.; García-Charton, J. A.; Marcos, C.
    A total of nine enzymes coded by 14 loci were assayed for each of six populations (from the north-eastern Atlantic and the Mediterranean) of two sea bream subspecies (Diplodus sargus sargus and Diplodus sargus cadenati). Diagnostic alleles were observed for each subspecies, although there were several common alleles. Estimates of variance in allele frequencies among samples (FST) revealed significant differences (P<0.05) among both subspecies. Genetic divergence was found between Atlantic and Mediterranean samples: values for genetic distances were higher than 0.163. Furthermore, D. sargus cadenati populations displayed a higher mean weight and length than D. sargus sargus populations and significant differences in growth were found among subspecies and populations. These results are discussed in terms of levels of gene flow and its respective relationships with water circulation in the Strait of Gibraltar and geological events.
  • West versus East Mediterranean Sea: origin and genetic differentiation of the sea cucumber Holothuria polii
    Publication . Valente, Sara; Serrão, Ester; Gonzalez-Wangueemert, Mercedes
    We studied the genetic structure of the sea cucumber Holothuria (Roweothuria) polii (Delle Chiaje 1823) by analysing the mitochondrial DNA variation in two fragments of cytochrome oxidase I (COI) and 16S genes. Individuals were collected in seven locations along the Mediterranean Sea, which cover a wide range of the species distribution. We found high haplotype diversity for COI and moderate diversity for 16S, and low nucleotide diversity for both genes. Our results for the COI gene showed many recent and exclusive haplotypes with few mutational changes, suggesting recent or ongoing population expansion. The Western and Eastern Mediterranean populations exhibited slight but significant genetic differentiation (COI gene) with higher genetic diversity in the East. The most ancient haplotype was not present in the westernmost sampling location (SE Spain). The oldest expansion time was observed in Turkey, corresponding to mid-Pleistocene. Turkey had also the highest genetic diversity (number of total and exclusive haplotypes, polymorphisms, haplotype and nucleotide diversity). This suggests that this region could be the origin of the subsequent colonizations through the Mediterranean Sea, a hypothesis that should be assessed with nuclear markers in future research.
  • Genetic differentiation among Parastichopus regalis populations in the Western Mediterranean Sea: potential effects from its fishery and current connectivity
    Publication . Maggi, C.; Gonzalez-Wanguemert, Mercedes
    Parastichopus regalis (Cuvier, 1817) is the most expensive seafood product on the Catalonian market (NE Spain), with prices at approximately 130 €/Kg (fresh weight). Despite its ecological and economic importance, biological and genetic information on this sea cucumber species is scarce. Here, we provide both the first insight on the genetic structure of P. regalis using sequences of cytochrome oxidase I (COI) and 16S genes and a morphological description of its population. Individual sea cucumbers were collected in six locations along the Spanish Mediterranean coast, including an area under fishery pressure (Catalonia). We found high haplotype diversity and low nucleotide diversity for both genes, with higher levels of genetic diversity observed in the COI gene. The population pairwise fixation index (FST), AMOVA and correspondence analysis (CA) based on the COI gene revealed significant genetic differentiation among some locations. However, further analysis using nuclear markers (e.g., microsatellites) is necessary to corroborate these results. Moreover, the genetic and morphological data may indicate fishery effects on the Catalonian population with a decrease in the size and weight averages and lower genetic diversity compared with locations that lack fishery pressure. For the appropriate management of this species, we suggest the following: 1) accurately assessing the stock status along the Spanish coasts; 2) studying the reproductive cycle of this target species and the establishment of a closed fishery season according to the reproductive cycle; and 3) establishing protected areas (i.e., not take zones) to conserve healthy populations and favour recruitment in the nearby areas.