Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 11
  • TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKT
    Publication . Hill, Richard; Madureira, Patricia; Ferreira, Bibiana; Baptista, Inês; Machado, S.; Colaco, Laura; dos Santos, Marta; Liu, Ningshu; Dopazo, Ana; Ugurel, Selma; Adrienn, Angyal; Kiss-Toth, Endre; Isbilen, Murat; Gure, Ali O.; Link, Wolfgang
    Intrinsic and acquired resistance to chemotherapy is the fundamental reason for treatment failure for many cancer patients. The identification of molecular mechanisms involved in drug resistance or sensitization is imperative. Here we report that tribbles homologue 2 (TRIB2) ablates forkhead box O activation and disrupts the p53/MDM2 regulatory axis, conferring resistance to various chemotherapeutics. TRIB2 suppression is exerted via direct interaction with AKT a key signalling protein in cell proliferation, survival and metabolism pathways. Ectopic or intrinsic high expression of TRIB2 induces drug resistance by promoting phospho-AKT (at Ser473) via its COP1 domain. TRIB2 expression is significantly increased in tumour tissues from patients correlating with an increased phosphorylation of AKT, FOXO3a, MDM2 and an impaired therapeutic response. This culminates in an extremely poor clinical outcome. Our study reveals a novel regulatory mechanism underlying drug resistance and suggests that TRIB2 functions as a regulatory component of the PI3K network, activating AKT in cancer cells.
  • Cationic polyene phospholipids as DNA carriers for ocular gene therapy
    Publication . Machado, Susana; Calado, Sofia; Bitoque, Diogo; Oliveira, Ana Vanessa; Øpstad, Christer L.; Zeeshan, Muhammad; Sliwka, Hans-Richard; Partali, Vassilia; Pungente, Michael D.; Silva, Gabriela
    Recent success in the treatment of congenital blindness demonstrates the potential of ocular gene therapy as a therapeutic approach. The eye is a good target due to its small size, minimal diffusion of therapeutic agent to the systemic circulation, and low immune and inflammatory responses. Currently, most approaches are based on viral vectors, but efforts continue towards the synthesis and evaluation of new nonviral carriers to improve nucleic acid delivery. Our objective is to evaluate the efficiency of novel cationic retinoic and carotenoic glycol phospholipids, designated C20-18, C20-20, and C30-20, to deliver DNA to human retinal pigmented epithelium (RPE) cells. Liposomes were produced by solvent evaporation of ethanolic mixtures of the polyene compounds and coformulated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol (Chol). Addition of DNA to the liposomes formed lipoplexes, which were characterized for binding, size, biocompatibility, and transgene efficiency. Lipoplex formulations of suitable size and biocompatibility were assayed for DNA delivery, both qualitatively and quantitatively, using RPE cells and a GFP-encoding plasmid. The retinoic lipoplex formulation with DOPE revealed a transfection efficiency comparable to the known lipid references 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl]-cholesterol (DC-Chol) and 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EPC) and GeneJuice. The results demonstrate that cationic polyene phospholipids have potential as DNA carriers for ocular gene therapy.
  • Discovery of a Novel, Isothiazolonaphthoquinone-Based Small Molecule Activator of FOXO Nuclear-Cytoplasmic Shuttling
    Publication . Cautain, Bastien; Castillo, Francisco; Musso, Loana; Ferreira, Bibiana; de Pedro, Nuria; Quesada, Lorena Rodriguez; Machado, Susana; Vicente, Francisca; Dallavalle, Sabrina; Link, Wolfgang
    FOXO factors are tumour suppressor proteins commonly inactivated in human tumours by posttranslational modifications. Furthermore, genetic variation within the FOXO3a gene is consistently associated with human longevity. Therefore, the pharmacological activation of FOXO proteins is considered as an attractive therapeutic approach to treat cancer and age-related diseases. In order to identify agents capable of activating FOXOs, we tested a collection of small chemical compounds using image-based high content screening technology. Here, we report the discovery of LOM612 (compound 1a), a newly synthesized isothiazolonaphthoquinone as a potent FOXO relocator. Compound 1a induces nuclear translocation of a FOXO3a reporter protein as well as endogenous FOXO3a and FOXO1 in U2OS cells in a dose-dependent manner. This activity does not affect the subcellular localization of other cellular proteins including NFkB or inhibit CRM1-mediated nuclear export. Furthermore, compound 1a shows a potent antiproliferative effect in human cancer cell lines.
  • Efficiency of RAFT-synthesized PDMAEMA in gene transfer to the retina
    Publication . Bitoque, Diogo; S, Simão; Oliveira, Ana V.; Machado, S.; Duran, Margarita R.; Lopes, Eduardo; Costa, Ana M. Rosa da; Silva, Gabriela
    Gene therapy has long been heralded as the new hope to evolve from symptomatic care of genetic pathologies to a full cure. Recent successes in using gene therapy for treating several ocular and haematopoietic pathologies have shown the great potential of this approach that, in the early days, relied on the use of viral vectors, which were considered by many to be undesirable for human treatment. Therefore, there is considerable interest and effort in developing non-viral vectors, with efficiency close to that of viral vectors. The aim of this study was to develop suitable non-viral carriers for gene therapy to treat pathologies affecting the retina. In this study poly(2-(N,N-dimethylamino)ethyl methacrylate), PDMAEMA was synthesized by reversible addition-fragmentation chain transfer (RAFT) and the in vitro cytocompatibility and transfection efficiency of a range of polymer:DNA ratios evaluated using a retinal cell line; in vivo biocompatibility was evaluated by ocular injection in C57BL/6 mice. The results showed that through RAFT, it is possible to produce a defined-size polymer that is compatible with cell viability in vitro and capable of efficiently directing gene expression in a polymer-DNA ratio-dependent manner. When injected into the eyes of mice, these vectors induced a transient, mild inflammation, characteristic of the implantation of medical devices. These results form the basis of future studies where RAFT-synthesized PDMAEMA will be used to deliver gene expression systems to the retina of mouse models of retinal pathologies. Copyright © 2014 John Wiley & Sons, Ltd.
  • Harmine and Piperlongumine revert TRIB2-mediated drug resistance
    Publication . Machado, Susana; Silva, Andreia; De Sousa-Coelho, Ana Luísa; Duarte, Isabel; Grenho, Inês; Santos, Bruno F; Mayoral-Varo, Victor; Megias, Diego; Sánchez-Cabo, Fátima; Dopazo, Ana; Ferreira, Bibiana I.; Link, Wolfgang
    Therapy resistance is responsible for most relapses in patients with cancer and is the major challenge to improving the clinical outcome. The pseudokinase Tribbles homologue 2 (TRIB2) has been characterized as an important driver of resistance to several anti-cancer drugs, including the dual ATP-competitive PI3K and mTOR inhibitor dactolisib (BEZ235). TRIB2 promotes AKT activity, leading to the inactivation of FOXO transcription factors, which are known to mediate the cell response to antitumor drugs. To characterize the downstream events of TRIB2 activity, we analyzed the gene expression profiles of isogenic cell lines with different TRIB2 statuses by RNA sequencing. Using a connectivity map-based computational approach, we identified drug-induced gene-expression profiles that invert the TRIB2-associated expression profile. In particular, the natural alkaloids harmine and piperlongumine not only produced inverse gene expression profiles but also synergistically increased BEZ235-induced cell toxicity. Importantly, both agents promote FOXO nuclear translocation without interfering with the nuclear export machinery and induce the transcription of FOXO target genes. Our results highlight the great potential of this approach for drug repurposing and suggest that harmine and piperlongumine or similar compounds might be useful in the clinic to overcome TRIB2-mediated therapy resistance in cancer patients.
  • StemMapper: a curated gene expression database for stem cell lineage analysis
    Publication . Pinto, Jose P.; Machado, Rui S. R.; Magno, Ramiro; Oliveira, Daniel V.; Machado, Susana; Andrade, Raquel P.; Braganca, Jose; Duarte, Isabel; Futschik, Matthias E.
    Transcriptomic data have become a fundamental resource for stem cell (SC) biologists as well as for a wider research audience studying SC-related processes such as aging, embryonic development and prevalent diseases including cancer, diabetes and neurodegenerative diseases. Access and analysis of the growing amount of freely available transcriptomics datasets for SCs, however, are not trivial tasks. Here, we present StemMapper, a manually curated gene expression database and comprehensive resource for SC research, built on integrated data for different lineages of human and mouse SCs. It is based on careful selection, standardized processing and stringent quality control of relevant transcriptomics datasets to minimize artefacts, and includes currently over 960 transcriptomes covering a broad range of SC types. Each of the integrated datasets was individually inspected andmanually curated. StemMapper's user-friendly interface enables fast querying, comparison, and interactive visualization of quality-controlled SC gene expression data in a comprehensive manner. A proof-of-principle analysis discovering novel putative astrocyte/neural SC lineage markers exemplifies the utility of the integrated data resource. We believe that StemMapper can open the way for new insights and advances in SC research by greatly simplifying the access and analysis of SC transcriptomic data.
  • Retraction note: TRIB2 confers resistance to anti-cancer therapy by activating the serine/threonine protein kinase AKT
    Publication . Hill, Richard; Madureira, Patricia; Ferreira, Bibiana; Baptista, Ines; Machado, Susana; Colaҫo, Laura; dos Santos, Marta; Liu, Ningshu; Dopazo, Ana; Ugurel, Selma; Adrienn, Angyal; Kiss-Toth, Endre; Isbilen, Murat; Gure, Ali O.; Link, Wolfgang
    The authors have retracted this article as it has come to their attention that several images were inappropriately processed and duplicated in multiple figures. In particular, the data were duplicated, and in some cases inverted, across several panels in Figures 2c, 2b, 3d and Supplementary Figure 5. Erroneous data were also included in Figure 2e, Supplementary Figure 1 and Supplementary Figure 8. We apologize to the scientific community for any confusion this article may have caused. Richard Hill, Patricia Madureira, Bibiana I. Ferreira, Susana Machado, Ana Dopazo, Selma Ugurel, Endre Kiss-Toth, Murat isbilen and Wolfgang Link agree with this retraction. Inês Baptista, Laura Colaço, Marta dos Santos, Ningshu Liu, Angyal Adrienn and Ali O. Gure have not responded to correspondence from the Publisher about this retraction.
  • StemChecker: a web-based tool to discover and explore stemness signatures in gene sets
    Publication . Pinto, Jose P.; Kalathur, Ravi Kiran Reddy; Oliveira, Daniel V.; Barata, Tania; Machado, Rui; Machado, Susana; Pacheco-Leyva, Ivette; Duarte, Isabel; Futschik, Matthias E.
    Stem cells present unique regenerative abilities, offering great potential for treatment of prevalent pathologies such as diabetes, neurodegenerative and heart diseases. Various research groups dedicated significant effort to identify sets of genes-so-called stemness signatures-considered essential to define stem cells. However, their usage has been hindered by the lack of comprehensive resources and easy-to-use tools. For this we developed StemChecker, a novel stemness analysis tool, based on the curation of nearly fifty published stemness signatures defined by gene expression, RNAi screens, Transcription Factor (TF) binding sites, literature reviews and computational approaches. StemChecker allows researchers to explore the presence of stemness signatures in user-defined gene sets, without carrying-out lengthy literature curation or data processing. To assist in exploring underlying regulatory mechanisms, we collected over 80 target gene sets of TFs associated with pluri- or multipotency. StemChecker presents an intuitive graphical display, as well as detailed statistical results in table format, which helps revealing transcriptionally regulatory programs, indicating the putative involvement of stemness-associated processes in diseases like cancer. Overall, StemChecker substantially expands the available repertoire of online tools, designed to assist the stem cell biology, developmental biology, regenerative medicine and human disease research community. StemChecker is freely accessible at http://stemchecker.sysbiolab.eu.
  • Development of polymer-based delivery systems for the delivery of fusogenic factors
    Publication . Machado, S.; Silva, Gabriela; Santos, Marina I.
    Ischemic stroke ranks among the leading cause of death and adult disability in developed countries. An ischemic event leads to the formation of an area- called penumbra – that despite the higher risk of permanent damage can be recovered with adequate therapy. Therefore it is critical to develop therapeutic approaches aimed at regenerating the ischemic brain. Due to the short time window for therapy and the complications associated with the administration of large and frequent doses of therapeutic molecules, it is vital to develop delivery systems with controlled release. Our aim is to develop such a system for delivery of therapeutic molecules to the stroke area, in order to enhance the recovery of the damaged brain. For this purpose, Poly-lactic Acid (PLA) nanoparticles and Alginate/Chitosan nanoparticles, with a mean diameter of 290 nm, were prepared by a multiple emulsion technique and by ionotropic pre-gelation of alginate/chitosan polyelectrolyte complexation, respectively. When BSA was used as a model protein, its release from Alginate/Chitosan nanoparticles showed a burst release in the first hours, with 80% of entrapped BSA released by day three. This result shows that these systems are adequate for treatment of an ischemic episode, where it is critical to deliver an initial burst of therapeutic agent followed by a steady, slow release over time. Both types of nanoparticles presented no in vitro toxicity on the tested cell lines and in vivo analysis of nanoparticles loaded with Rhodamine 6G injected into the subretinal space of C57Bl6 mice showed no macroscopic signs of inflammation. Finally, the biodistribution of nanoparticles administered intravenously in CD1 and nude mice suggest that the nanoparticles can travel along the bloodstream of the experimental animals and accumulate in particular tissues. These results show that the developed systems can be part of a successful approach to treat ischemic events, by delivering therapeutic molecules and releasing them with an adequate profile.
  • Adaptive mechanisms of resistance to antineoplastic agents
    Publication . Ferreira, Bibiana; Lie, Maria K.; Engelsen, Agnete S. T.; Machado, Susana; Link, Wolfgang; Lorens, James B.
    Intrinsic and acquired resistance to conventional and targeted therapeutics is a fundamental reason for treatment failure in many cancer patients. Targeted approaches to overcome chemoresistance as well as resistance to targeted approaches require in depth understanding of the underlying molecular mechanisms. The anti-cancer activity of a drug can be limited by a broad variety of molecular events at different levels of drug action in a cell-autonomous and non-cell-autonomous manner. This review summarizes recent insights into the adaptive mechanisms used by tumours to resist therapy including cellular phenotypic plasticity, dynamic alterations of the tumour microenvironment, activation of redundant signal transduction pathways, modulation of drug target expression levels, and exploitation of pro-survival responses.