Loading...
5 results
Search Results
Now showing 1 - 5 of 5
- Cost-benefit analysis of tidal energy production in a coastal lagoon: the case of Ria Formosa – PortugalPublication . Rodrigues, Nuno; Pintassilgo, Pedro; Calhau, Francisco; G-Gorbeña, Eduardo; Pacheco, AndréThe energy that can be extracted from tidal currents is one of the most promising renewable energy sources due to its high density/predictability. Within this paper this energy source is evaluated economically respecting sustainability principles. This evaluation contrasts from previous studies due to the application of a cost-benefit analysis based on a hydro-morphodynamic model, and moving away from the classic proxy of wind energy. It further includes, via the Monte Carlo method, a probabilistic underpinning to the project. The hydro-economic model was applied to a tidal energy project using an Evopod 1:4th scale prototype, based on a real deployment of an Evopod 1:10th scale device in the Ria Formosa, Algarve. The results show that, under the current costs and benefits, the project is not economically viable. However, there are admissible parameter ranges that make the project viable such as significant reduction of investment costs, increased capacity factors and favourable energy prices. This novel methodology has potential to be applied to other tidal energy projects on estuarine systems worldwide, and consists of a comprehensive modelling approach, including the technical, environmental, and socio-economic dimensions of the project, not only in a deterministic setting but also in a probabilistic one.
- Surrogate-based optimization of tidal turbine arrays: a case study for the Faro-Olhão inletPublication . G-Gorbeña, Eduardo; Pacheco, André; Plomaritis, Theocharis; Ferreira, Oscar; Sequeira, Claudia; Moura, TheoThis paper presents a study for estimating the size of a tidal turbine array for the Faro-Olhão Inlet (Potugal) using a surrogate optimization approach. The method compromises problem formulation, hydro-morphodynamic modelling, surrogate construction and validation, and constraint optimization. A total of 26 surrogates were built using linear RBFs as a function of two design variables: number of rows in the array and Tidal Energy Converters (TECs) per row. Surrogates describe array performance and environmental effects associated with hydrodynamic and morphological aspects of the multi inlet lagoon. After validation, surrogate models were used to formulate a constraint optimization model. Results evidence that the largest array size that satisfies performance and environmental constraints is made of 3 rows and 10 TECs per row.
- Assessing the effects of Tidal Energy Converter array size on hydrodynamics of Ria Formosa (Portugal)Publication . G-Gorbeña, Eduardo; Pacheco, André; Plomaritis, Theocharis A.; Sequeira, ClaudiaThis paper investigates the effects of Tidal Energy Converter (TEC) array size at a tidal channel on flood/ebb discharges at multi-inlet coastal lagoon by applying numerical modelling. The paper presents a case study for the Faro-Olhão inlet in the Ria Formosa (Portugal), a potential site for tidal in-stream energy extraction. Arrays of up to 11 rows with 5 TECs each were studied to assess impacts on inlets discharges changes. For the particular cases assessed the results show that tidal energy extraction will have a greater impact on Ancão and Armona inlets discharges together with the Faro-Olhão inlet. Future work is directed to include impacts on sediment dynamics and optimise TEC array size as a function of multiple design variables subject to environmental constraints.
- Deployment characterization of a floatable tidal energy converter on a tidal channel, Ria Formosa, PortugalPublication . Pacheco, André; G-Gorbeña, Eduardo; Plomaritis, Haris; Garel, Erwan; Gonçalves, J. M. S.; Bentes, L.; Monteiro, P.; Afonso, Carlos; Oliveira, Frederico; Soares, C.; Zabel, F.; Sequeira, ClaudiaThis paper presents the results of a pilot experiment with an existing tidal energy converter (TEC), Evopod 1 kW floatable prototype, in a real test case scenario (Faro Channel, Ria Formosa, Portugal). A baseline marine geophysical, hydrodynamic and ecological study based on the experience collected on the test site is presented. The collected data was used to validate a hydro-morphodynamic model, allowing the selection of the installation area based on both operational and environmental constraints. Operational results related to the description of power generation capacity, energy capture area and proportion of energy flux are presented and discussed, including the failures occurring during the experimental setup. The data is now available to the scientific community and to TEC industry developers, enhancing the operational knowledge of TEC technology concerning efficiency, environmental effects, and interactions (i.e. device/environment). The results can be used by developers on the licensing process, on overcoming the commercial deployment barriers, on offering extra assurance and confidence to investors, who traditionally have seen environmental concerns as a barrier, and on providing the foundations whereupon similar deployment areas can be considered around the world for marine tidal energy extraction.
- Baseline assessment of underwater noise in the Ria FormosaPublication . Soares, C; Pacheco, André; Zabel, Friedrich; G-Gorbeña, Eduardo; Sequeira, ClaudiaThe Ria Formosa is a sheltered large coastal lagoon located on the Atlantic South Coast of Portugal, that has been classified as a natural park since 1987. The lagoon hosts a diverse and abundant fish community and other species of commercial importance. Several economical activities are supported by shipping, and as such, vessel traffic within the Ria Formosa lagoon is very intense at some locations during particular seasons of the year, creating high levels of underwater noise. Recently, strong efforts are being made to turn the main inlet of the lagoon, the Faro-Olhão Inlet, a testing site for small scale tidal stream turbines, which will bring an additional source of underwater noise. Underwater noise can be one of a number of factors causing habitat degradation, as it can perturb fish behavior and cause physiological damage. Therefore, in order to comply with underwater noise pollution regulations, tidal energy technology developers are very interested in minimising the introduction of acoustic energy in the environment during the operation of their devices. Under the scope of project SCORE, which involved the deployment and operation of a floating tidal energy converter, this paper presents and discusses the first baseline noise monitoring performed at Ria Formosa. The acoustic data were collected in two occasions over several days, one in the winter and the other in the summer, in 2017. The obtained analysis results highlight the potential impact of the intense boat traffic in Ria Formosa, and the wide range of sound levels introduced in that ecosystem, and the high diurnal and seasonal variability.