Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 5 of 5
  • Luminance, colour, viewpoint and border enhanced disparity energy model
    Publication . Martins, Jaime; Rodrigues, Joao; du Buf, J. M. H.
    The visual cortex is able to extract disparity information through the use of binocular cells. This process is reflected by the Disparity Energy Model, which describes the role and functioning of simple and complex binocular neuron populations, and how they are able to extract disparity. This model uses explicit cell parameters to mathematically determine preferred cell disparities, like spatial frequencies, orientations, binocular phases and receptive field positions. However, the brain cannot access such explicit cell parameters; it must rely on cell responses. In this article, we implemented a trained binocular neuronal population, which encodes disparity information implicitly. This allows the population to learn how to decode disparities, in a similar way to how our visual system could have developed this ability during evolution. At the same time, responses of monocular simple and complex cells can also encode line and edge information, which is useful for refining disparities at object borders. The brain should then be able, starting from a low-level disparity draft, to integrate all information, including colour and viewpoint perspective, in order to propagate better estimates to higher cortical areas.
  • Cortical multiscale line-edge disparity model
    Publication . Rodrigues, J. M. F.; Martins, Jaime; Lam, Roberto; du Buf, J. M. H.
    Most biological approaches to disparity extraction rely on the disparity energy model (DEM). In this paper we present an alternative approach which can complement the DEM model. This approach is based on the multiscale coding of lines and edges, because surface structures are composed of lines and edges and contours of objects often cause edges against their background. We show that the line/edge approach can be used to create a 3D wireframe representation of a scene and the objects therein. It can also significantly improve the accuracy of the DEM model, such that our biological models can compete with some state-of-the-art algorithms from computer vision.
  • Region segregation and saliency using colour information
    Publication . Martins, Jaime; Rodrigues, J. M. F.; du Buf, J. M. H.
    Saliency maps determine the likelihood that we focus on interesting areas of scenes or images. These maps can be built using several low-level image features, one of which having a particular relevance: colour. In this paper we present a new computational model, based only on colour features, which provides a sound basis for saliency maps for static images and video, plus region segregation and cues for local gist vision.
  • Biological models for active vision: towards a unified architecture
    Publication . Terzic, Kasim; Lobato, D.; Saleiro, Mário; Martins, Jaime; Farrajota, Miguel; Rodrigues, J. M. F.; du Buf, J. M. H.
    Building a general-purpose, real-time active vision system completely based on biological models is a great challenge. We apply a number of biologically plausible algorithms which address different aspects of vision, such as edge and keypoint detection, feature extraction,optical flow and disparity, shape detection, object recognition and scene modelling into a complete system. We present some of the experiments from our ongoing work, where our system leverages a combination of algorithms to solve complex tasks.
  • Disparity energy model using a trained neuronal population
    Publication . Martins, Jaime; Rodrigues, J. M. F.; du Buf, J. M. H.
    Depth information using the biological Disparity Energy Model can be obtained by using a population of complex cells. This model explicitly involves cell parameters like their spatial frequency, orientation, binocular phase and position difference. However, this is a mathematical model. Our brain does not have access to such parameters, it can only exploit responses. Therefore, we use a new model for encoding disparity information implicitly by employing a trained binocular neuronal population. This model allows to decode disparity information in a way similar to how our visual system could have developed this ability, during evolution, in order to accurately estimate disparity of entire scenes