Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 4 of 4
  • Field calibration a tool for acoustic noise prediction. The CALCOM 10 data set
    Publication . Felisberto, P.; Jesus, S. M.; Martins, N.
    It is widely recognized that anthropogenic noise affects the marine fauna, thus it becomes a major concern in ocean management policies. In the other hand there is an increasing demand for wave energy installations that, presumably, are an important source of noise. A noise prediction tool is of crucial importance to assess the impact of a perspective installation. Contribute for the development of such a tool is one of the objectives of the WEAM project. In this context, the CALCOM’10 sea trial took place off the south coast of Portugal, from 22 to 24 June, 2010 with the purpose of field calibration. Field calibration is a concept used to tune the parameters of an acoustic propagation model for a region of interest. The basic idea is that one can significantly reduce the uncertainty of the predictions of acoustic propagation in a region, even with scarce environmental data (bathymetric, geoacoustic), given that relevant acoustic parameters obtained by acoustic inference (i.e. acoustic inversion) are integrated in the prediction scheme. For example, this concept can be applied to the classical problem of transmission loss predictions or, as in our case, the problem of predicting the distribution of acoustic noise due to a wave energy power plant. In such applications the accuracy of bathymetric and geoacoustic parameters estimated by acoustic means is not a concern, but only the uncertainty of the predicted acoustic field. The objective of this approach is to reduce the need for extensive hydrologic and geoacoustic surveys, and reduce the influence of modelling errors, for example due to the bathymetric discretization used. Next, it is presented the experimental setup and data acquired during the sea trial as well as preliminary results of channel characterization and acoustic forward modelling.
  • From oceanographic to acoustic forecasting: acoustic model calibration using in situ acoustic measures
    Publication . Martins, N.; Jesus, S. M.
    Sonar performance prediction relies heavily on acoustic propagation models and environmental representations of the oceanic area in which the sonar is to operate. The performance estimate is derived from a predicted acoustic eld, which is the output of a propagation model. Though well developed nowadays, acoustic propagation modeling is limited in practice by simpli cations in the numerical methods, in the environmental structure to consider (for computational reasons), and even in the knowledge of some environmental properties. This is complicated by the fact that, in sonar performance prediction, the environmental properties need to be predicted for a far future, in the order of hours or days. These limitations imply that the acoustic eld at the output of the acoustic predictor is biased, in current methods. In mathematical terms, the prediction of the acoustic eld can be seen as a model parametrization problem, in which the model is a numerical propagation model, and the parameters are environmental descriptors which, when fed to the propagation model, best model the future acoustic field. Since the 1980's, signi cant research has been done in the development of propagation model parametrization, using techniques of the so-called \acoustic inversion" family. These techniques, having as objective the estimation of environmental properties of an oceanic area, use observed acoustic elds at the area, to be matched with candidate elds corresponding to candidate environmental pictures. At the end, the best acoustic match gives the estimated environment, in other words, the best model parameters to closely reproduce the measured acoustic eld. In the current work, the technique of acoustic inversion is used in the design of an acoustic predictor, together with oceanographic forecasts and measures. Synthetic acoustic data generated with oceanographic measures taken in the MREA'03 sea trial, is used to illustrate the proposed method. The results show that a collection of environments estimated by past acoustic inversions, can ameliorate the acoustic estimates for future time, as compared to a conventional method.
  • Bayesian acoustic prediction assimilating oceanographic and acoustically inverted data
    Publication . Martins, N.; Jesus, S. M.
    The prediction of the transmission loss evolution on a day to week frame, in a given oceanic area, is an important issue in modeling the sonar performance. It relies primarily on acoustic propagation models, which convert water column and geometric/ geoacoustic parameters to ‘instantaneous’ acoustic field estimates. In practice, to model the acoustic field, even the most accurate acoustic models have to be fed with simplified environmental descriptions, due to computational issues and to a limited knowledge of the environment. This is a limitation, for example, in acoustic inversion methods, in which, by maximizing the proximity between measured and modeled acoustic signals, the estimated environmental parameters are deviated from reality, forming what is normally called an ‘acoustically equivalent environment’. This problem arises also in standard acoustic prediction, in which, the oceanographic forecasts and bottom data (typically from archives) are fed directly to an acoustic model. The claim in the present work is that, by converting the oceanographic prediction and the bottom properties to ‘acoustically equivalent’ counterparts, the acoustic prediction can be obtained in an optimal way, adapted to the environmental model at hand. Here, acoustic prediction is formulated as a Bayesian estimation problem, in which, the observables are oceanographic forecasts, a set of known bottom parameters, a set of acoustic data, and a set of water column data. The predictive posterior PDF of the future acoustic signal is written as a function of elementary PDF functions relating these observables and ‘acoustically equivalent’ environmental parameters. The latter are obtained by inversion of acoustic data. The concept is tested on simulated data based on water column measurements and forecasts for the MREA’03 sea trial.
  • Estimating equivalent bottom geoacoustial parameters from broadband inversion
    Publication . Demoulin, X.; Pelissero, L.; Stephan, Y.; Jesus, S. M.; Porter, M. B.; Coelho, E.
    A simple and fast approach to retrieve equivalent geoacoustic parameters is presented in this paper. The method is based upon the processing of 300-800 Hz broadband signals on a single hydrophone.Two stable characteristics of the impulse response of the shallow water waveguide are estimated: the time dispersion and the bottom reflection amplitudes. This two features are analytically linked to the compressional speed and to the attenuation coefficient of the medium. The inversion of the two latter geoacoustic parameters is straightforward since it relies on an analytical expression. The method is tested on INTIMATE96 data. The results show an excellent agreement between the reflection of the true medium and the reflection coefficient of the equivalent medium.