Repository logo
 

Search Results

Now showing 1 - 10 of 26
  • Desulfurization of diesel by extraction coupled with Mo-catalyzed sulfoxidation in polyethylene glycol-based deep eutectic solvents
    Publication . Juliao, Diana; Gomes, Ana C.; Pillinger, Martyn; Lopes, Andre D.; Valenca, Rita; Ribeiro, Jorge C.; Goncalves, Isabel S.; Balula, Salete S.
    Oxidative desulfurization (ODS) is a method of removing sulfur from diesel fuel that has the potential to complement or even replace conventional hydrodesulfurization processes in oil refineries. One of the most promising variants of ODS is extractive and catalytic ODS (ECODS) in which the organic sulfur compounds in the liquid fuel are oxidized and extracted in situ from the oil phase into an extractant phase. In this study, the desulfurizalion of model and real diesel fuel has been performed in ECODS systems employing two different types of deep eutectic solvents (DESs), prepared by combining polyethylene glycol (PEG) as hydrogen bond donor with tetrabutylammonium chloride (TBACl) or choline chloride (ChCl) as hydrogen bond acceptor. The ECODS systems were evaluated with the complexes [MoO2Cl2(DMB)(2)] (1) and [MoO2Cl2(DEO)] (2) (DMB - N,N-dimethylbenzamide, DEO = N,N'-diethyloxamide) as catalysts and 30 wt% H2O2 as oxidant. The effects of different reaction conditions, such as the amount of catalyst, H2O2 and DES, and reaction temperature, were investigated. The combination of complex 1 with the DES ChCl/PEG showed the best performance for the removal of dibenzothiophene, 4-methyldibenzothiophene and 4,6-di methyldibenzothiophene from a high-sulfur (3000 ppm) model diesel, allowing a desulfurization efficiency of 99.6% to be attained at 70 degrees C within 2 h. By applying the optimized model diesel ECODS systems to the treatment of a commercial untreated diesel with a sulfur content of 2300 ppm. 82% of sulfur compounds could be eliminated. These promising results indicate that DESs are a viable alternative to ionic liquids as extraction solvents in ECODS processes. (C) 2020 Elsevier B.V. All rights reserved.
  • Catalytic alcoholysis of epoxides using metal-free cucurbituril-based solids
    Publication . Bruno, Sofia M.; Gomes, Ana C.; Oliveira, Tânia S. M.; Antunes, Margarida M.; Lopes, Andre D.; Valente, Anabela A.; Gonçalves, Isabel S.; Pillinger, Martyn
    Metal-free cucurbit[7]uril (CB7) solid-state assemblies promote acid-catalysed alcoholysis of aliphatic and aromatic epoxides under mild conditions to give beta-alkoxy alcohols, which are important intermediates for the synthesis of a vast range of compounds such as bioactive pharmaceuticals. The catalytic process is heterogeneous and the catalyst can be reused in consecutive runs without any reactivation treatment. The acid species responsible for the catalytic activity of CB7 may be entrapped hydronium ions.
  • A 5-(2-Pyridyl) tetrazolate complex of Molybdenum(VI), its structure, and transformation to a Molybdenum Oxide-Based Hybrid Heterogeneous Catalyst for the Epoxidation of Olefins
    Publication . Nunes, Martinique S.; Gomes, Diana M.; Gomes, Ana C.; Neves, Patrícia; Mendes, Ricardo F.; Paz, Filipe A. Almeida; Lopes, A. D.; Valente, Anabela A.; Gonçalves, Isabel S.; Pillinger, Martyn
    There is a considerable practical interest in discovering new ways to obtain organomolybdenum heterogeneous catalysts for olefin epoxidation that are easier to recover and reuse and display enhanced productivity. In this study, the complex salt (H2pytz)[MoO2Cl2 (pytz)] (1) (Hpytz = 5-(2-pyridyl)tetrazole) has been prepared, structurally characterized, and employed as a precursor for the hydrolysis-based synthesis of a microcrystalline molybdenum oxide/organic hybrid material formulated as [MoO3 (Hpytz)] (2). In addition to single-crystal X-ray diffraction (for 1), compounds 1 and 2 were characterized by FT-IR and Raman spectroscopies, solid-state 13C{1H} cross-polarization (CP) magic-angle spinning (MAS) NMR, and scanning electron microscopy (SEM). Compounds 1 and 2 were evaluated as olefin epoxidation catalysts using the model reaction of cis-cyclooctene (Cy8) with tert-butyl hydroperoxide (TBHP), at 70 ◦C, which gave 100% epoxide selectivity up to 100% conversion. While 1 behaved as a homogeneous catalyst, hybrid 2 behaved as a heterogeneous catalyst and could be recovered for recycling without showing structural degradation or loss of catalytic performance over consecutive reaction cycles. The substrate scope was broadened to monoterpene DL-limonene (Lim) and biobased unsaturated fatty acid methyl esters, methyl oleate (MeOle), and methyl linoleate (MeLin), which gave predominantly epoxide products.
  • A Molybdenum(VI) Complex of 5-(2-pyridyl-1-oxide)tetrazole: synthesis, structure, and transformation into a MoO3-Based hybrid catalyst for the epoxidation of Bio-Olefins
    Publication . Nunes, Martinique S.; Gomes, Diana M.; Gomes, Ana C.; Neves, Patrícia; Mendes, Ricardo F.; Paz, Filipe A. Almeida; Lopes, Andre D.; Pillinger, Martyn; Valente, Anabela A.; Gonçalves, Isabel S.
    The discovery of heterogeneous catalysts synthesized in easy, sustainable ways for the valorization of olefins derived from renewable biomass is attractive from environmental, sustainability, and economic viewpoints. Here, an organic–inorganic hybrid catalyst formulated as [MoO3 (Hpto)]·H2O (2), where Hpto = 5-(2-pyridyl-1-oxide)tetrazole, was prepared by a hydrolysis– condensation reaction of the complex [MoO2Cl2 (Hpto)]·THF (1). The characterization of 1 and 2 by FT-IR and Raman spectroscopies, as well as 13C solid-state NMR, suggests that the bidentate N,O-coordination of Hpto in 1 (forming a six-membered chelate ring, confirmed by X-ray crystallography) is maintained in 2, with the ligand coordinated to a molybdenum oxide substructure. Catalytic studies suggested that 2 is a rare case of a molybdenum oxide/organic hybrid that acts as a stable solid catalyst for olefin epoxidation with tert-butyl hydroperoxide. The catalyst was effective for converting biobased olefins, namely fatty acid methyl esters (methyl oleate, methyl linoleate, methyl linolenate, and methyl ricinoleate) and the terpene limonene, leading predominantly to the corresponding epoxide products with yields in the range of 85–100% after 24 h at 70 ◦C. The versatility of catalyst 2 was shown by its effectiveness for the oxidation of sulfides into sulfoxides and sulfones, at 35 ◦C (quantitative yield of sulfoxide plus sulfone, at 24 h; sulfone yields in the range of 77–86%). To the best of our knowledge, 2 is the first molybdenum catalyst reported for methyl linolenate epoxidation, and the first of the family [MoO3 (L)x] studied for methyl ricinoleate epoxidation.
  • A hydrogen-bonded assembly of cucurbit[6]uril and [MoO2Cl2(H2O)(2)] with catalytic efficacy for the one-pot conversion of olefins to alkoxy products
    Publication . Nogueira, Lucie S.; Antunes, Margarida M.; Gomes, Ana C.; Cunha-Silva, Luis; Pillinger, Martyn; Lopes, Andre D.; Valente, Anabela A.; Goncalves, Isabel S.
    The reaction of the macrocyclic cavitand cucurbit[6]uril (CB[6]) and the diaqua complex [MoO2Cl2(H2O)(2)] in hydrochloric acid solution gave a water insoluble supramolecular compound with the general composition 2[MoO2Cl2(H2O)(2)]center dot CB[6]center dot xH(2)O center dot yHCl center dot z(CH3COCH3) (2). Single crystal X-ray diffraction (XRD) analysis revealed the presence of barrel-shape supramolecular entities, {CB[6]center dot 10(H2O)}, aligned in layers which are shifted relative to adjacent layers to form a brick-like pattern. The CB[6]/water hydrogen-bonded entities further engage in intermolecular interactions with water, HCl and [MoO2Cl2(H2O)(2)] molecules to form a three-dimensional (3D) framework. Compound 2 was characterised by thermogravimetric analysis (TGA), IR and Raman vibrational spectroscopy, and C-13{H-1} CP MAS NMR. The reference complex [MoO2Cl2(H2O)(2)]center dot(diglyme)(2) (1) and compound 2 were studied for the oxidative catalytic conversion of olefins (cis-cyclooctene, cyclohexene and styrene) with aqueous H2O2 as oxidant. Using alcohols as solvents, 2 was employed in a one-pot two-stage strategy for converting olefins to alkoxy products, which involves oxidation (with H2O2) and acid chemistry. Mechanistic studies were carried out using different intermediates as substrates, and the type of solvent and substrate scope were investigated. The results demonstrated the ability of the CB[6]/Mo-VI supramolecular adduct to function as an acid-oxidation multifunctional catalyst, and its recovery and reuse via relatively simple procedures.
  • Solid-state study of the structure and host-guest chemistry of cucurbituril-ferrocene inclusion complexes
    Publication . Gomes, Ana C.; Magalhães, Clara I. R.; Oliveira, Tânia S. M.; Lopes, Andre D.; Gonçalves, Isabel S.; Pillinger, Martyn
    Inclusion complexes of ferrocene (Fc) with cucurbit[n]urils (n = 7, 8) have been prepared via a rapid microwave-assisted hydrothermal approach. Solids were isolated and characterised by elemental analysis, powder X-ray diffraction (PXRD), spectroscopic, and thermoanalytical methods. The UV-Vis spectra support the presence of Fc in Fc@CB7 and a mixture of Fc and ferrocenium ions in Fc@CB8. Partial oxidation of Fc to Fc(+) takes place in situ mainly due to the presence of acid of crystallisation in CB8. On the basis of PXRD, the complex Fc@CB8 is classified into an isostructural series that is formed by several CB8-containing compounds that crystallise in the space group /4(1)/a and have similar unit cell dimensions and CB8 packing motifs. The FT-IR and Raman spectra of Fc@CB7 are compared with those of the CB7 host and the Fc guest starting materials, revealing significant frequency shifts of some Fc-centered vibrational modes upon complexation. Blueshifts of the Fe-Cp stretching and ring tilt bands are attributed to encapsulation of Fc monomers in a constrained environment, leading to restricted motion effects and/or a change in the Fc conformation from staggered to eclipsed. The absence of comparable shifts for Fc@CB8 point to a weaker host-guest interaction as a consequence of the larger cavity size. The different host-guest interactions are also evident through a comparison of the C-13{H-1} CP MAS NMR spectra. Thermogravimetric analysis for the inclusion compounds reveals that sublimation of Fc is inhibited by molecular encapsulation to the extent that oxidative decomposition of the organoiron species takes place concurrently with cucurbituril decomposition, leading to the formation of hematite, alpha-Fe2O3.
  • 4,4 '-Di-tert-butyl-2,2 '-bipyridine
    Publication . Amarante, Tatiana R.; Figueiredo, Sonia; Lopes, Andre D.; Gonçalves, Isabel S.; Almeida Paz, Filipe A.
    In the title compound, C18H24N2, the molecular unit adopts a trans conformation around the central C-C bond [N-C-C-N torsion angle of 179.2(3)degrees], with the two aromatic rings almost coplanar [dihedral angle of only 0.70 (4)degrees]. The crystal packing is driven by co-operative contacts involving weak C H center dot center dot center dot N and C-H center dot center dot center dot pi interactions, and also the need to fill effectively the available space.
  • Inclusion complexes of cucurbit[n]urils (n = 7, 8) with η5 -cyclopentadienyl methyl tricarbonyl molybdenum(II) and their use in epoxidation catalysis
    Publication . Neves, Patrícia; Gomes, Ana C.; Monteiro, Rodrigo P.; Santos, Mirela J.; Valente, Anabela A.; D. Lopes, André; Gonçalves, Isabel S.; Pillinger, Martyn
    There are very few known examples of supramolecular compounds comprising molybdenum species hosted inside the portals/cavities of cucurbit[n]urils (CBn). In this work, CB7 and CB8 macrocycles have been studied as hosts for the carbonyl complex [CpMo(CO)(3)Me] (1) (Cp = eta(5)-C5H5). Compounds were isolated in the solid state and characterized as genuine 1:1 inclusion complexes (1@CBn) by elemental and thermogravimetric analyses, powder X-ray diffraction, scanning electron microscopy, C-13{H-1} cross-polarization magic-angle spinning NMR, FT-IR, Raman, and diffuse reflectance UV-Vis spectroscopies. The host-guest structures can act as supramolecular precatalysts for olefin epoxidation. Based on the model reaction of cis-cyclooctene with hydroperoxide oxidants (tert-butylhydroperoxide or hydrogen peroxide), the structural features of 1@CBn as well as the operating conditions influence the catalytic process. The metal species in 1@CBn undergo oxidative decarbonylation in situ, giving oxidized metal species that are catalytically active for olefin epoxidation. The type of oxidant and solvent influences the catalytic activity and stability. 1@CB8 was more stable than 1@CB7 with regard to catalyst recycling and reuse. Based on the substrate scope investigation, for relatively large olefins, such as the fatty acid methyl ester methyl oleate, the size of the macrocyclic host may be a determining factor for catalytic activity.
  • Synthesis and catalytic properties in olefin epoxidation of octahedral dichloridodioxidomolybdenum(VI) complexes bearing N,N-dialkylamide ligands: crystal structure of [Mo2O4(mu(2)-O)Cl-2(dmf)(4)]
    Publication . Gago, Sandra; Neves, Patrícia; Monteiro, Bernardo; Pessêgo, Márcia; Lopes, Andre D.; Valente, Anabela A.; Almeida Paz, Filipe A.; Pillinger, Martyn; Moreira, José; Silva, Carlos M.; Gonçalves, Isabel S.
    The catalytic performance of the complexes [MoO2Cl2(L)2][L = N,N-dimethylformamide (dmf), N,N-dimethylacetamide(dma), N,N-dimethylpropionamide (dmpa), N,N-diethylformamide(def) and N,N-diphenylformamide (dpf)] was examined in the epoxidation of cis-cyclooctene with tert-butyl hydroperoxide(tbhp) at 55 °C and in the absence of a cosolvent.The complexes showed high turnover frequencies in the range of 561–577 molmolMo–1h–1, giving the epoxide as the only product in 98% yield after 6 h. The reaction rates decreased significantly in consecutive runs carried out by recharging the reactors with olefin and oxidant. On the basis of the IR spectroscopic characterisation of the solids recovered at the end of the catalytic reactions, the decrease in activity is attributed to the formation of dioxido(μ-oxido)-molybdenum(VI) dimers. Accordingly, the treatment of [MoO2Cl2(dmf)2] with an excess amount of tbhp led to the isolation of [Mo2O4(μ2-O)Cl2(dmf)4], which was characterised by single-crystal X-ray diffraction and found to exhibit a catalytic performance very similar to that found in the second runs for the mononuclear complexes. The kinetics of the reaction of [MoO2Cl2(dmf)2] with tbhp was further examined by UV/Vis spectroscopy, allowing rate constants and activation parameters to be determined. For the dpf adduct, the effect of different solvents on cyclooctene epoxidation and the epoxidation of other olefins, namely, (R)-(+)-limonene, α-pinene and norbornene, were investigated
  • Ferrocene and ferrocenium inclusion compounds with cucurbiturils: a study of metal atom dynamics probed by Mossbauer spectroscopy
    Publication . Magalhães, Clara I. R.; Gomes, Ana C.; Lopes, Andre D.; Gonçalves, Isabel S.; Pillinger, Martyn; Jin, Eunyoung; Kim, Ikjin; Ko, Young Ho; Kim, Kimoon; Nowik, Israel; Herber, Rolfe H.
    Temperature-dependent 57Fe Mossbauer effect (ME) spectroscopic studies were carried out on ferrocene (Fc), 1,10-dimethylferrocene (1,10'(CH3)(2)Fc) and ferrocenium hexafluorophosphate (FcPF(6)) guest species in cucurbit[n] uril (n = 7, 8) inclusion complexes. The solid inclusion complexes were isolated by freeze-drying of dilute aqueous solutions and/or microwave-assisted precipitation from concentrated mixtures. The presence of genuine 1 : 1 (host : guest) inclusion complexes in the isolated solids was supported by liquid-state H-1 and solid-state C-13{H-1} MAS NMR, elemental and thermogravimetric analyses, powder X-ray diffraction, FTIR spectroscopy, and diffuse reflectance UV-Vis spectroscopy. The ME spectra of the complexes CB7.Fc and CB7.11'(CH3)(2)Fc consist of well-resolved doublets with hyperfine parameters (isomer shift and quadrupole splitting at 90 K) and temperature-dependent recoil-free fraction data that are very similar to those for the neat parent compounds, Fc and 1,10(CH3)(2)Fc, suggesting that the organometallic guest molecules do not interact significantly with the host environment over the experimental temperature range. The ME spectra for CB7.FcPF(6) and CB8.FcPF(6) consist of a major broad line resonance attributed to a paramagnetic FeIII site. From the temperature-dependence of the recoil-free fraction it is evident that the charged guest species in these systems interact with the host environment significantly more strongly than was observed in the case of the neutral guest species, Fc and 1,10(CH3)(2)Fc. Moreover, the ME data indicate that the vibrational amplitude of the ferrocenium guest molecule is significantly larger in the CB8 host molecule than in the CB7 homologue, as expected on the basis of the different cavity sizes.