Loading...
40 results
Search Results
Now showing 1 - 10 of 40
- Effect of antioxidant and optimal antimicrobial mixtures of carvacrol, grape seed extract and chitosan on different spoilage microorganisms and their application as coatings on different food matricesPublication . Rubilar, Javiera F.; Cruz, R. M. S.; Khmelinskii, Igor; Vieira, M. M. C.There is growing interest in the use of natural agents with antimicrobial (AM) and antioxidant (AOX) properties. Optimization of the AM capacity for mixtures containing carvacrol, grape seed extract (GSE) and chitosan, against gram-negative (Pseudomonas aeruginosa), gram-positive bacteria (Staphylococcus aureus, Listeria innocua and Enterococcus faecalis) and yeast (Saccharomyces cerevisiae) at 106 cfu mL−1 was studied. To observe the synergistic or antagonistic effect and find optimal combinations between the three agents, a simplex centroid mixture design was run for each microorganism, combining carvacrol (0-300 ppm, X1)X, GSE (0-2000 ppm, X2) and chitosan (0-2% w/v, X3). Results of the response surface analysis showed several synergistic effects for all microorganisms. Combinations of 60 ppm-400 ppm-1.2% w/v (carvacrol-GSE-chitosan; optimal AM combination 1, OAMC-1); 9.6 ppm-684 ppm-1.25% w/v (OAMC-2); 90 ppm-160 ppm-1.24% w/v (OAMC-3) were found to be the optimal mixtures for all microorganisms. Radical scavenging activity (RSA) of the same agents was then compared with a standard AOX (butylated hydroxytoluene; BHT) at different concentrations (25, 50 and 100 ppm; as well as the optimal AM concentrations) by the 1,1-diphenyl-2- picrylhydrazyl (DPPH) method. RSA increased in the following order: chitosan< carvacrol< BHT< GSE and for the OAMC: OAMC-2< OAMC-1< OAMC-3. The best RSA (OAMC-3) was applied as a coating in two different food matrices (strawberries and salmon). For strawberries, P. aeruginosa was more sensitive to the action of OAMC-3 than S. cerevisiae. For salmon, S. aureus was more resistant to the action of OAMC-3 than E. faecalis and L. innocua.
- Mathematical modeling of gallic acid release from chitosan films with grape seed extract and carvacrolPublication . Rubilar, Javiera F.; Cruz, Rui; Zuñiga, Rommy N.; Khmelinskii, Igor; Vieira, M. M. C.Controlled release of antimicrobial and antioxidant compounds from packaging films is of utmost importance for extending the shelf-life of perishable foods. This study focused on the mathematical modeling of gallic acid release into an aqueous medium from three chitosan films, formulated with grape seed extract (GSE) and carvacrol. We quantified the release by HPLC technique during 30days at three temperatures (5, 25 and 45°C). The diffusion coefficients, varying with temperature according to an Arrhenius-type relationship, and the respective activation energies for Film-1 and Film-2 were, respectively [Formula: see text] m2s-1 and [Formula: see text] m2s-1, Ea1=58kJmol-1 and Ea2=60kJmol-1 as obtained from the Fickian fit. The low concentrations of gallic acid released by Film-3 could not be detected by HPLC, therefore the respective diffusion coefficient was not estimated. This study will help with the development and optimization of active packaging (AP) films aiming at improved food preservation and shelf-life extension.
- Front-face fluorescence spectroscopy and chemometrics for quality control of cold-pressed rapeseed oil during storagePublication . Sikorska, Ewa; Wójcicki, Krzysztof; Kozak, Wojciech; Gliszczyńska-Świgło, Anna; Khmelinskii, Igor; Górecki, Tomasz; Caponio, Francesco; Paradiso, Vito M.; Summo, Carmine; Pasqualone, AntonellaThe aim of this study was to test the usability of fluorescence spectroscopy to evaluate the stability of cold-pressed rapeseed oil during storage. Freshly-pressed rapeseed oil was stored in colorless and green glass bottles exposed to light, and in darkness for a period of 6 months. The quality deterioration of oils was evaluated on the basis of several chemical parameters (peroxide value, acid value, K232 and K270, polar compounds, tocopherols, carotenoids, pheophytins, oxygen concentration) and fluorescence. Parallel factor analysis (PARAFAC) of oil excitation-emission matrices revealed the presence of four fluorophores that showed different evolution throughout the storage period. The fluorescence study provided direct information about tocopherol and pheophytin degradation and revealed formation of a new fluorescent product. Principal component analysis (PCA) performed on analytical and fluorescence data showed that oxidation was more advanced in samples exposed to light due to the photo-induced processes; only a very minor effect of the bottle color was observed. Multiple linear regression (MLR) and partial least squares regression (PLSR) on the PARAFAC scores revealed a quantitative relationship between fluorescence and some of the chemical parameters.
- Computational modeling of In vitro swelling of mitochondria: A biophysical approachPublication . Makarov, Vladimir I.; Khmelinskii, Igor; Javadov, SabzaliSwelling of mitochondria plays an important role in the pathogenesis of human diseases by stimulating mitochondria-mediated cell death through apoptosis, necrosis, and autophagy. Changes in the permeability of the inner mitochondrial membrane (IMM) of ions and other substances induce an increase in the colloid osmotic pressure, leading to matrix swelling. Modeling of mitochondrial swelling is important for simulation and prediction of in vivo events in the cell during oxidative and energy stress. In the present study, we developed a computational model that describes the mechanism of mitochondrial swelling based on osmosis, the rigidity of the IMM, and dynamics of ionic/neutral species. The model describes a new biophysical approach to swelling dynamics, where osmotic pressure created in the matrix is compensated for by the rigidity of the IMM, i.e., osmotic pressure induces membrane deformation, which compensates for the osmotic pressure effect. Thus, the effect is linear and reversible at small membrane deformations, allowing the membrane to restore its normal form. On the other hand, the membrane rigidity drops to zero at large deformations, and the swelling becomes irreversible. As a result, an increased number of dysfunctional mitochondria can activate mitophagy and initiate cell death. Numerical modeling analysis produced results that reasonably describe the experimental data reported earlier.
- Screening of antioxidant properties of the apple juice using the front-face synchronous fluorescence and chemometricsPublication . Wlodarska, Katarzyna; Pawlak-Lemanska, Katarzyna; Khmelinskii, Igor; Sikorska, EwaFluorescence spectroscopy is gaining increasing attention in food analysis due to its higher sensitivity and selectivity as compared to other spectroscopic techniques. Synchronous scanning fluorescence technique is particularly useful in studies of multi-fluorophoric food samples, providing a further improvement of selectivity by reduction in the spectral overlapping and suppressing light-scattering interferences. Presently, we study the feasibility of the prediction of the total phenolics, flavonoids, and antioxidant capacity using front-face synchronous fluorescence spectra of apple juices. Commercial apple juices from different product ranges were studied. Principal component analysis (PCA) applied to the unfolded synchronous fluorescence spectra was used to compare the fluorescence of the entire sample set. The regression analysis was performed using partial least squares (PLS1 and PLS2) methods on the unfolded total synchronous and on the single-offset synchronous fluorescence spectra. The best calibration models for all of the studied parameters were obtained using the PLS1 method for the single-offset synchronous spectra. The models for the prediction of the total flavonoid content had the best performance; the optimal model was obtained for the analysis of the synchronous fluorescence spectra at Delta lambda = 110 nm (R (2) = 0.870, residual predictive deviation (RPD) = 2.7). The optimal calibration models for the prediction of the total phenolic content (Delta lambda = 80 nm, R (2) = 0.766, RPD = 2.0) and the total antioxidant capacity (Delta lambda = 70 nm, R (2) = 0.787, RPD = 2.1) had only an approximate predictive ability. These results demonstrate that synchronous fluorescence could be a useful tool in fast semi-quantitative screening for the antioxidant properties of the apple juices.
- Quantum mechanism of light energy propagation through an avian retinaPublication . Zueva, Lidia; Golubeva, Tatiana; Korneeva, Elena; Resto, Oscar; Inyushin, Mikhail; Khmelinskii, Igor; Makarov, VladimirTaking into account the ultrastructure of the Pied Flycatcher foveal retina reported earlier and the earlier reported properties of Muller cell (MC) intermediate filaments (IFs) isolated from vertebrate retina, we proposed a quantum mechanism (QM) of light energy transfer from the inner limiting membrane level to visual pigments in the photoreceptor cells. This mechanism involves electronic excitation energy transfer in a donor-acceptor system, with the IFs excited by photons acting as energy donors, and visual pigments in the photoreceptor cells acting as energy acceptors. It was shown earlier that IFs with diameter 10 nm and length 117 mu m isolated from vertebrate eye retina demonstrate properties of light energy guide, where exciton propagates along such IFs from MC endfeet area to photoreceptor cell area. The energy is mostly transferred via the contact exchange quantum mechanism. Our estimates demonstrate that energy transfer efficiencies in such systems may exceed 80-90%. Thus, the presently developed quantum mechanism of light energy transfer in the inverted retina complements the generally accepted classic optical mechanism and the mechanism whereby Muller cells transmit light like optical fibers. The proposed QM of light energy transfer in the inverted retina explains the high image contrast achieved in photopic conditions by an avian eye, being probably also active in other vertebrates.
- External control of the Drosophila melanogaster egg to imago development period by specific combinations of 3D low-frequency electric and magnetic fieldsPublication . Makarov, Vladimir I.; Khmelinskii, IgorWe report that the duration of the egg-to-imago development period of the Drosophila melanogaster, and the imago longevity, are both controllable by combinations of external 3-dimensional (3D) low-frequency electric and magnetic fields (LFEMFs). Both these periods may be reduced or increased by applying an appropriate configuration of external 3D LFEMFs. We report that the longevity of D. melanogaster imagoes correlates with the duration of the egg-to-imago development period of the respective eggs. We infer that metabolic processes in both eggs and imago are either accelerated (resulting in reduced time periods) or slowed down (resulting in increased time periods). We propose that external 3D LFEMFs induce electric currents in live systems as well as mechanical vibrations on sub-cell, whole-cell and cell-group levels. These external fields induce media polarization due to ionic motion and orientation of electric dipoles that could moderate the observed effects. We found that the longevity of D. melanogaster imagoes is affected by action of 3D LFEMFs on the respective eggs in the embryonic development period (EDP). We interpret this effect as resulting from changes in the regulation mechanism of metabolic processes in D. melanogaster eggs, inherited by the resulting imagoes. We also tested separate effects of either 3D electric or 3D magnetic fields, which were significantly weaker.
- New unique optical and electric properties of intermediate filaments in Muller cellsPublication . Khmelinskii, Igor; Makarov, VladimirPresently we report new unique optical and electric properties of Muller cell (MC) intermediate filaments (IFs). We inform that these IFs extracted from porcine retina are excellent conductors of light and electric current. Such IF properties may endow vertebrate eyes with high-contrast vision. The properties of the IFs allow a simple quantum-mechanical description that justifies the quantum mechanism (QM) for the light energy transfer between the inner and the outer limiting membranes. These properties also provide direct and unequivocal proof that QM works even in isolated IFs, while the classic theory admits no capacity for light transmission by objects that are so thin. Note that the length and diameter of the IFs were 117 +/- 1.3 mu m and 10.1 +/- 0.07 nm, respectively. The QM avoids the light scattering effects, which could significantly reduce the visual contrast, by conducting light energy in the form of excitons (excited states). This scientific breakthrough may provide new insights for medical ophthalmology.
- Evaluation of total phenolic content in virgin olive oil using fluorescence excitation-emission spectroscopy coupled with chemometricsPublication . Squeo, Giacomo; Caponio, Francesco; Paradiso, Vito M.; Summo, Carmine; Pasqualone, Antonella; Khmelinskii, Igor; Sikorska, EwaBackground Determination of the total phenolic content (TPC) in olive oils is of great interest, as phenolic compounds affect the health benefits, sensory attributes and oxidative stability of olive oils. The aim of this study was to explore the feasibility of direct front-face fluorescence measurements coupled with chemometrics for developing multivatiate models for discrimination between virgin olive oils with low and high TPC and determination of TPC concentration. Results Parallel factor analysis and principal component analysis of fluorescence excitation-emission matrices (EEMs) of virgin olive oils revealed different fluorescent properties for samples with low and high TPC. A perfect discrimination of oils with low and high TPC was achieved using partial least squares (PLS) discriminant analysis. The best regression model for the prediction of TPC was based on the PLS analysis of the unfolded entire EEMs (R-2 = 0.951, RPD = 4.0). Conclusions The results show the potential of fluorescence spectroscopy for direct screening of virgin olive oils for TPC. This may contribute to the development of fast screening methods for TPC assessment, providing an alternative to conventional assays. The procedure is environmentally friendly and fulfils the requirements for green analytical chemistry. (c) 2018 Society of Chemical Industry
- Spectral selectivity model for light transmission by the intermediate filaments in Muller cellsPublication . Khmelinskii, Igor; Golubeva, Tatiana; Korneeva, Elena; Inyushin, Mikhail; Zueva, Lidia; Makarov, VladimirPresently we continue our studies of the quantum mechanism of light energy transmission in the form of excitons by axisymmetric nanostructures with electrically conductive walls. Using our theoretical model, we analyzed the light energy transmission by biopolymers forming optical channels within retinal Muller cells. There are specialized intermediate filaments (IF) 10-18 nm in diameter, built of electrically conductive polypeptides. Presently, we analyzed the spectral selectivity of these nanostructures. We found that their transmission spectrum depends on their diameter and wall thickness. We also considered the classical approach, comparing the results with those predicted by the quantum mechanism. We performed experimental measurements on model quantum waveguides, made of rectangular nanometer-thick chromium (Cr) tracks. The optical spectrum of such waveguides varied with their thickness. We compared the experimental absorption/transmission spectra with those predicted by our model, with good agreement between the two. We report that the observed spectra may be explained by the same mechanisms as operating in metal nanolayers. Both the models and the experiment show that Cr nanotracks have high light transmission efficiency in a narrow spectral range, with the spectral maximum dependent on the layer thickness. Therefore, a set of intermediate filaments with different geometries may provide light transmission over the entire visible spectrum with a very high (similar to 90%) efficiency. Thus, we believe that high contrast and visual resolution in daylight are provided by the quantum mechanism of energy transfer in the form of excitons, whereas the ultimate retinal sensitivity of the night vision is provided by the classical mechanism of photons transmitted by the Muller cell light-guides.