Loading...
Research Project
Interdisciplinary Centre of Marine and Environmental Research
Funder
Authors
Publications
Dietary tryptophan intervention counteracts stress-induced transcriptional changes in a teleost fish HPI axis during inflammation
Publication . Peixoto, Diogo; Carvalho, Inês; Machado, Marina; Aragão, Cláudia; Costas, Benjamín; Azeredo, Rita
Immune nutrition is currently used to enhance fish health by incorporating functional ingredients into aquafeeds. This study aimed to investigate the connections between tryptophan nutrition and the network that regulates the communication pathways between neuroendocrine and immune systems in European seabass (Dicentrarchus labrax). When tryptophan was supplemented in the diet of unstressed fish, it induced changes in the hypothalamic-pituitary-interrenal axis response to stress. Tryptophan-mediated effects were observed in the expression of anti-inflammatory cytokines and glucocorticoid receptors. Tryptophan supplementation decreased pro-opiomelanocortin b-like levels, that are related with adrenocorticotropic hormone and cortisol secretion. When stressed fish fed a tryptophan-supplemented diet were subjected to an inflammatory stimulus, plasma cortisol levels decreased and the expression of genes involved in the neuroendocrine response was altered. Modulatory effects of tryptophan dietary intervention on molecular patterns seem to be mediated by altered patterns in serotonergic activity.
Amyloodiniosis in aquaculture: A review
Publication . Moreira, Márcio; Costas, Benjamín; Rodrigues, Pedro; Lourenço‐Marques, Cátia; Sousa, Rui; Schrama, Denise; Raposo de Magalhães, Cláudia; Farinha, Ana Paula; Soares, Florbela
Fish ectoparasites are one of the pathogens groups that pose great concern to the aquaculture industry. The dinoflagellate Amyloodinium ocellatum is responsible for amyloodiniosis, a parasitological disease with a strong economic impact in temperate and warm water aquaculture, mainly in earthen pond semi-intensive systems. Amyloodiniosis represents one of the most important bottlenecks for aquaculture and, with the predictable expansion of the area of influence of this parasite to higher latitudes due to global warming it might also be a threat to other aquaculture species that are not yet parasitized by A. ocellatum. This review made a compilation of the existing knowledge about this parasite and the disease associated with it. It was noticed that, except from the life cycle characterisation, detection methods, histopathological analysis, and treatments, there are still a lot of areas that need a further investment in research. Areas like parasite-host interactions, epidemiological models, taxonomy, host physiological responses to parasitism, and genome sequencing, amongst others, can contribute to a better understanding of this disease. These proposed approaches and routes of investigation will enhance and contribute to a more standardised knowledge, creating the opportunity for a better understanding of amyloodiniosis impacts on fish and contributing for the development of new tools against A. ocellatum, that may reduce fish mortality in aquaculture production due to amyloodiniosis outbreaks.
The microbial rare biosphere: current concepts, methods and ecological principles
Publication . Pascoal, Francisco; Costa, Rodrigo; Magalhaes, Catarina
Our ability to describe the highly diverse pool of low abundance populations present in natural microbial communities is increasing at an unprecedented pace. Yet we currently lack an integrative view of the key taxa, functions and metabolic activity which make-up this communal pool, usually referred to as the 'rare biosphere', across the domains of life. In this context, this review examines the microbial rare biosphere in its broader sense, providing an historical perspective on representative studies which enabled to bridge the concept from macroecology to microbial ecology. It then addresses our current knowledge of the prokaryotic rare biosphere, and covers emerging insights into the ecology, taxonomy and evolution of low abundance microeukaryotic, viral and host-associated communities. We also review recent methodological advances and provide a synthetic overview on how the rare biosphere fits into different conceptual models used to explain microbial community assembly mechanisms, composition and function.
The link between the ecology of the prokaryotic rare biosphere and its biotechnological potential
Publication . Pascoal, Francisco; Magalhães, Catarina; Costa, Rodrigo
Current research on the prokaryotic low abundance taxa, the prokaryotic rare biosphere, is growing, leading to a greater understanding of the mechanisms underlying organismal rarity and its relevance in ecology. From this emerging knowledge it is possible to envision innovative approaches in biotechnology applicable to several sectors. Bioremediation and bioprospecting are two of the most promising areas where such approaches could find feasible implementation, involving possible new solutions to the decontamination of polluted sites and to the discovery of novel gene variants and pathways based on the attributes of rare microbial communities. Bioremediation can be improved through the realization that diverse rare species can grow abundant and degrade different pollutants or possibly transfer useful genes. Further, most of the prokaryotic diversity found in virtually all environments belongs in the rare biosphere and remains uncultivatable, suggesting great bioprospecting potential within this vast and understudied genetic pool. This Mini Review argues that knowledge of the ecophysiology of rare prokaryotes can aid the development of future, efficient biotechnology-based processes, products and services. However, this promise may only be fulfilled through improvements in (and optimal blending of) advanced microbial culturing and physiology, metagenomics, genome annotation and editing, and synthetic biology, to name a few areas of relevance. In the future, it will be important to understand how activity profiles relate with abundance, as some rare taxa can remain rare and increase activity, whereas other taxa can grow abundant. The metabolic mechanisms behind those patterns can be useful in designing biotechnological processes.
Microalgal biomasses have potential as ingredients in microdiets for Senegalese sole (Solea senegalensis) post-larvae
Publication . Peixoto, Diogo; Pinto, Wilson; Gonçalves, Ana Teresa; Machado, Marina; Reis, Bruno; Silva, Joana; Navalho, Joao; Dias, Jorge; Conceicao, Luis; Costas, Benjamin
Senegalese sole (Solea senegalensis) production presents several nutritional challenges, making this species a good candidate to study the dietary potential of bioactive compounds. Since proper nutrition plays a fundamental role in fish biology, it is necessary to further investigate species-specific and well-balanced diets in order to improve Senegalese sole juvenile farming. Algae have antioxidant properties, high-quality dietary protein, and are a source of bioactive compounds. This study evaluates the effects of dietary microalgal inclusion in both health status and growth performance of Senegalese sole post-larvae. Individuals 41 days after hatching (DAH) were randomly distributed among 12 tanks and four experimental diets were randomly distributed by triplicate groups. A basal diet served as CTRL and the experimental diets were formulated to include 3% of each of the algal biomass (CHLO, Chlorella sp. from heterotrophic production; PHAEO, Phaeodactylum sp.; and NANNO, Nannochloropsis sp.). At 50 DAH, 20 post-larvae/tank were collected and homogenized for analysis of immune and oxidative status, and at 61 DAH the total length, dry weight, and survival were assessed. No changes were observed in survival and total length of individuals, post-larvae fed NANNO, and CHLO dietary treatments increased dry weight at 61 DAH compared with those fed CTRL. While post-larvae immune status was apparently not altered by dietary treatments at 50 DAH, the total glutathione content decreased in fish fed PHAEO and CHLO dietary treatments compared to control diet. The observed results on improvement of growth performance without adverse effects on the immune status and decrease of endogenous total glutathione point to the fact that Nannochloropsis sp., Phaeodactylum sp., and Chlorella sp. could work as potential candidates for inclusion in microdiets for Senegalese sole.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
UIDB/04423/2020