Repository logo
 
Loading...
Project Logo
Research Project

Impact of challenging environmental conditions on plant secondary metabolism

Authors

Publications

Impact of temperature on Phenolic and Osmolyte contents in In Vitro cultures and micropropagated plants of two mediterranean plant species, Lavandula viridis and Thymus lotocephalus
Publication . Mansinhos, Inês; Gonçalves, Sandra; Rodríguez Solana, Raquel; Ordóñez-Díaz, José Luis; Moreno-Rojas, José Manuel; Romano, Anabela
In this study, in vitro cultures and micropropagated plants of two Mediterranean aromatic plants, Lavandula viridis L’Hér and Thymus lotocephalus López and Morales, were exposed to different temperatures (15, 20, 25, and 30 ◦C). The effect of temperature on the levels of hydrogen peroxide (H2O2 ), lipid peroxidation, and osmoprotectants (proline, soluble sugars, and soluble proteins), as well as on the phenolic profile by HPLC-HRMS and intermediates of the secondary metabolism (phenylalanine ammonia lyase (PAL) activity and shikimic acid content), was investigated. Moreover, the antioxidant activity of the plant extracts was also analyzed. Overall, considering the lipid peroxidation and H2O2 content, the extreme temperatures (15 and 30 ◦C) caused the greatest damage to both species, but the osmoprotectant response was different depending on the species and plant material. In both species, phenolic compounds and related antioxidant activity increased with the rise in temperature in the micropropagated plants, while the opposite occurred in in vitro cultures. L. viridis cultures showed the highest biosynthesis of rosmarinic acid (92.6 g/kgDW) at 15 ◦C and seem to be a good alternative to produce this valuable compound. We conclude that contrasting temperatures greatly influence both species’ primary and secondary metabolism, but the response is different depending on the plant micropropagation stage.
Phenolic profile, antioxidant activity and enzyme inhibitory capacities of fruit and seed extracts from different Algerian cultivars of date (Phoenix dactylifera L.) were affected by in vitro simulated gastrointestinal digestion
Publication . Djaoudene, Ouarda; Mansinhos, Inês; Gonçalves, Sandra; Jose Jara-Palacios, M.; Bey, Mostapha Bachir; Romano, Anabela
The aim of the present study was to evaluate the influence of the digestive process (gastric and intestinal phases) on the stability of the individual and total phenolic (TPC) and flavonoid (TFC) contents, antioxidant activity and enzymes inhibitory potential of extracts from date fruits (pulp) and seeds from eight Algerian cultivars of date palm (Phoenix dactylifera). The obtained results showed a considerable increase in the TPC for both samples when exposed to digestion conditions. The TFC was higher after gastric digestion compared to intestinal digestion. Along the digestion process, the release of individual phenolics (phenolic acids and flavonoids) analyzed by ultra-high-performance liquid chromatography (UHPLC) showed different behavior in seed and fruit extracts. The digestion increased the scavenging of 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and peroxyl (oxygen radical absorbance capacity, ORAC) radicals in both samples. However, ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity were reduced in date seed extracts, while the fruit extracts showed an increase at the end of digestion process. The enzymes inhibitory potential of date seeds extracts decreased after digestion and was maintained or enhanced in fruit extracts. Thus, it seems that the date fruit extracts had more bioaccessible components compared to seed extracts. (C) 2020 SAAB. Published by Elsevier B.V. All rights reserved.
Influence of wine pH and ethanol content on the fining efficacy of proteins from winemaking by-products
Publication . Baca-Bocanegra, Berta; Gonçalves, Sandra; Nogales-Bueno, Julio; Mansinhos, Inês; Heredia, Francisco José; Hernández-Hierro, José Miguel; Romano, A.
Wine color and limpidity are important aspects of consumer preferences. The alteration of these parameters can damage wine’s appearance but also its mouthfeel characteristics due to its relationship with attributes such as bitterness and astringency. Fining is a practice usually used in enology to modulate undesirable wine organoleptic attributes. However, there are several factors that influence this technique. In this study, the influence of wine pH and ethanol content on grape seed protein fining efficacy has been assessed. Wine clarification, total phenolic and flavanol contents, antioxidant activity, and chromatic parameters have been investigated before and after fining process. The most noticeable clarifying effects were observed for the experimental wines with a lower pH and ethanol content. Control of these factors will make it possible to modulate the main organoleptic properties of the wine, also avoiding the addition of large amounts of fining agents and thus providing greater versatility to wineries during winemaking. Furthermore, our findings indicated that grape seed protein is a potential alternative to other plant-based fining proteins commonly used in winemaking. Its effects on clarification and color quality have been found to be comparable to those of potato protein and significantly better than those of pea protein.
Impact of metallic nanoparticles on In vitro culture, phenolic profile and biological activity of two mediterranean lamiaceae species: Lavandula viridis L’Hér and Thymus lotocephalus G. López and R. Morales
Publication . Gonçalves, Sandra; Mansinhos, Inês; Rodríguez-Solana, Raquel; Pereira-Caro, Gema; Moreno-Rojas, José Manuel; Romano, Anabela
Nanoparticles (NPs) recently emerged as new chemical elicitors acting as signaling agents affecting several processes in plant metabolism. The aim of this work was to investigate the impact of the addition of copper oxide (CuO), zinc oxide (ZnO) and iron oxide (Fe3O4 ) NPs (<100 nm) at different concentrations (1, 5 and 10 mg/L) to the culture media on several morphological, physiological and -biochemical parameters of in vitro shoot cultures of Lavandula viridis L’Hér and Thymus lotocephalus G. López and R. Morales (Lamiaceae), as well as on phenolic profile and bioactivity (antioxidant and enzyme inhibition capacities). Although some decreases in shoot number and length were observed in response to NPs, biomass production was not affected or was improved in both species. Most NPs treatments decreased total chlorophyll and carotenoid contents and increased malondialdehyde levels, an indicator of lipid peroxidation, in both species. HPLC-HR-MS analysis led to the identification of thirteen and twelve phenolic compounds, respectively, in L. viridis and T. lotocephalus extracts, being rosmarinic acid the major compound found in all the extracts. ZnO and Fe3O4 NPs induced an increase in total phenolic and rosmarinic acid contents in T. lotocephalus extracts. Additionally, some NPs treatments also increased antioxidant activity in extracts from this species and the opposite was observed for L. viridis. The capacity of the extracts to inhibit tyrosinase, acetylcholinesterase and butyrylcholinesterase enzymes was not considerably affected. Overall, NPs had a significant impact on different parameters of L. viridis and T. lotocephalus in vitro shoot cultures, although the results varied with the species and NPs type.
Exploring the biotechnological value of marine invertebrates: a closer look at the biochemical and antioxidant properties of Sabella spallanzanii and Microcosmus squamiger
Publication . Pan, Yu-Lun; Rodrigues, Maria João; Pereira, Catarina; Engrola, Sofia; Colen, R.; Mansinhos, Inês; Romano, Anabela; Andrade, Paula B.; Fernandes, Fátima; Custódio, Luísa
Sabella spallanzanii and Microcosmus squamiger were profiled for proximate composition, minerals, amino acids, fatty acids (FA), carotenoids, radical scavenging activity on the 2,2-diphenyl-1- picrylhydrazyl (DPPH) radical, oxygen radical absorbance capacity (ORAC) and iron and copper chelating properties. Microcosmus squamiger had the highest level of moisture and crude protein, S. spallanzanii was enriched in crude fat and ash. Both species had similar levels of carbohydrates and energy. There was a prevalence of arginine and glycine in S. spallanzanii, and of taurine in M. squamiger. The most abundant minerals in both species were Na, Ca, and K. The methanol extract of S. spallanzanii had metal chelating properties towards copper and iron, while the methanol extract of M. squamiger was able to chelate copper. M. squamiger extracts had similar ORAC values. Fucoxanthinol and fucoxanthin were the major carotenoids in the M. squamiger dichloromethane extract. Saturated FA were more abundant than unsaturated ones in methanol extracts, and unsaturated FA prevailed in the dichloromethane extracts. Palmitic acid was the predominant FA in methanol extracts, whereas eicosapentaenoic (EPA) and dihomo-γ-linolenic acids were the major compounds in dichloromethane extracts. Low n-6/n-3 ratios were obtained. Our results suggests that both species could be explored as sources of bioactive ingredients with multiple applications.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

OE

Funding Award Number

SFRH/BD/145243/2019

ID