Repository logo
 
Loading...
Project Logo
Research Project

FUNCTIONAL ANALYSIS OF OSTEOCALCIN BONE CLA PROTEIN OR BGP FROM BONY FISH DURING SKELETAL DEVELOPMENT

Authors

Publications

Identification of a promoter element within the zebrafish Collagen X¿1 gene responsive to Runx2 isoforms Osf2/Cbfa1 and til-1 but not to pebp2aA2
Publication . Simões, B.; Conceição, N.; S B Viegas, Carla; Pinto, Jorge; Gavaia, Paulo J.; Kelsh, R. N.; Cancela, Leonor
Type X collagen is a short chain collagen specifically expressed by hypertrophic chondrocytes during endochondral ossification. We report here the functional analysis of the zebrafish (Danio rerio) collagen Xa1 gene (colXa1) promoter with the identification of a region responsive to two isoforms of the runt domain transcription factor runx2.
Osteological development and abnormalities of the vertebral column and caudal skeleton in larval and juvenile stages of hatchery-reared Senegal sole (Solea senegalensis)
Publication . Gavaia, Paulo J.; Dinis, Maria Teresa; Cancela, Leonor
The Senegal sole is a species recently adapted to aquaculture for which little information on larval development is available. This study was designed to describe normal skeletal development and the occurrence of skeletal malformations in Senegal sole reared in captivity. Eggs were collected from natural spawning, incubated until hatching and larvae reared to the juvenile stage in a closed recirculating system. Samples were collected throughout development at regular intervals from hatching to fully formed juveniles. Specimens were stained with alcian blue and alizarin red and observed for skeletal development and detection of anomalies. A high number of malformations were detected, both in the caudal complex and the vertebral column. About 44% of the individuals observed showed at least one malformation and the highest occurrence of deformities was observed in the caudal region and in the vertebral column. Accordingly, 28% of the total deformities identified in this study were detected at those sites and in adjacent arches and spines. The causes were not identified in this study, but the high incidence of malformations may reflect culture problems due to rearing and/or feeding conditions that affect skeletal development.
Functional analysis of bone related Gla proteins from bony fish during skeletal development
Publication . Gavaia, Paulo J.; Cancela, Leonor
As proteinas dependentes da vitamina K, proteína Gla do osso (BGP ou osteocalcina) e proteína Gla da matriz (MGP) são pequenas proteinas que ligam o cálcio, tendo sido recentemente descobertas em peixe.
Osteological development and abnormalities of the vertebral column and caudal skeleton in larval and juvenile stages of hatchery reared solea senegalensis (kaup)
Publication . Gavaia, Paulo J.; Dinis, Maria Teresa; Cancela, Leonor
The Senegal sole is a species recently adapted to aquaculture for which little information on larval development is available. This study was designed to describe normal skeletal development and the occurrence of skeletal malformations in Senegal sole reared in captivity. Eggs were collected from natural spawning, incubated until hatching and larvae reared to the juvenile stage in a closed recirculating system. Samples were collected throughout development at regular intervals from hatching to fully formed juveniles. Specimens were stained with alcian blue and alizarin red and observed for skeletal development and detection of anomalies. A high number of malformations were detected, both in the caudal complex and the vertebral column. About 44% of the individuals observed showed at least one malformation and the highest occurrence of deformities was observed in the caudal region and in the vertebral column. Accordingly, 28% of the total deformities identified in this study were detected at those sites and in adjacent arches and spines. The causes were not identified in this study, but the high incidence of malformations may reflect culture problems due to rearing and/or feeding conditions that affect skeletal development.
Osteocalcin and Matrix Gla Protein in zebrafish (Danio rerio) and Senegal sole (Solea senegalensis): comparative gene and protein expression during larval development through adulthood
Publication . Gavaia, Paulo J.; Simes, D; Ortiz-Delgado, J. B.; S B Viegas, Carla; Pinto, Jorge; Kelsh, R. N.; Sarasquete, C.; Cancela, Leonor
Bone Gla protein (Bgp or osteocalcin) and matrix Gla protein (Mgp) are important in calcium metabolism and skeletal development, but their precise roles at the molecular level remain poorly understood. Here, we compare the tissue distribution and accumulation of Bgp and Mgp during larval development and in adult tissues of zebrafish (Danio rerio) and throughout metamorphosis in Senegal sole (Solea senegalensis), two fish species with contrasting environmental calcium levels and degrees of skeletal reorganization at metamorphosis. Mineral deposition was investigated in parallel using a modified Alizarin red/Alcian blue protocol allowing sensitive simultaneous detection of bone and cartilage. In zebrafish, bgp and mgp mRNAs were localized in all mineralized tissues during and after calcification including bone and calcified cartilage of branchial arches. Through immunohistochemistry we demonstrated that these proteins accumulate mainly in the matrix of skeletal structures already calcified or under calcification, confirming in situ hybridization results. Interestingly, some accumulation of Bgp was also observed in kidney, possibly due to the presence of a related protein, nephrocalcin. Chromosomal localization of bgp and mgp using a zebrafish radiation hybrid panel indicated that both genes are located on the same chromosome, in contrast to mammals where they map to different chromosomes, albeit in regions showing synteny with the zebrafish location. Results in Senegal sole further indicate that, during metamorphosis, there is an increase in expression of both bgp and mgp, paralleling calcification of axial skeleton structures. In contrast with results obtained for previously studied marine fishes, in zebrafish and Senegal sole Mgp accumulates in both calcified tissues and non-mineralized vessel walls of the vascular system. These results suggest different patterns of Mgp accumulation between fish and mammals.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

POCTI

Funding Award Number

PRAXIS XXI/BD/19665/99

ID