Loading...
Research Project
New Approach to Underwater Technologies for Innovative, Low-cost Ocean obServation
Funder
Authors
Publications
SMS-Coastal, a new Python tool to manage MOHID-based coastal operational models
Publication . Mendonça, Fernando; Martins, Flávio; Janeiro, João
This paper presents the Simulation Management System for Operational Coastal Hydrodynamic Models, or SMS-Coastal, and its novel methodology designed to automate forecast simulations of coastal models. Its working principle features a generic framework that can be easily configured for other applications, and it was implemented with the Python programming language. The system consists of three main components: the Forcing Processor, Simulation Manager, and Data Converter, which perform operations such as the management of forecast runs and the download and conversion of external forcing data. The SMS-Coastal was tested on two model realisations using the MOHID System: SOMA, a model of the Algarve coast in Portugal, and BASIC, a model of the Cartagena Bay in Colombia. The tool proved to be generic enough to handle the different aspects of the models, being able to manage both forecast cycles.
Baseline climatology of the Canary Current Upwelling System and evolution of sea surface temperature
Publication . Mills, Lara; Janeiro, João; Martins, F.
Global climate change has induced a rise in sea surface temperature (SST), although this increase is not uniform across the world. Significant variations exist between coastal and offshore waters, particularly in regions affected by upwelling processes. This study focuses on the Canary Current Upwelling System (CCUS), stretching from Northwest Iberia to Northwest Africa. High-resolution remotely sensed SST data (0.05°) from the ODYSSEA Level 4 Sea Surface Temperature Reprocessed dataset were validated with in situ measurements and employed to establish a regional climatological baseline for 1982–2012. Subsequent years were compared to this baseline to construct SST anomaly maps, revealing SST changes since 2012. The study area was further divided into sub-regions for comparative analysis. Results indicate that SST consistently increased at a higher rate offshore compared to the adjacent nearshore regions. A reference dataset spanning 1951–1981 was used to gauge SST variability between the two baselines. SST exhibited a 0.59 °C increase from 1951–1981 to 1982–2012, with a slowing of SST trends beyond the 1982–2012 baseline. This research offers valuable insights into the climatological dynamics of the CCUS. These findings enhance our understanding of this critical coastal system’s climatology, laying the groundwork for future investigations into evolving climate patterns in coastal regions.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
European Commission
Funding programme
H2020
Funding Award Number
101000825