Repository logo
 
Publication

An invariant for stallings manifolds from a TQFT

dc.contributor.authorSemião, Paulo
dc.date.accessioned2014-06-20T13:25:13Z
dc.date.available2014-06-20T13:25:13Z
dc.date.issued2006
dc.description.abstractWe will present our construction of a class of effectively calculable, isomorphism invariants for Stallings [1] manifolds by constructing a class of Topological Quantum Field Theories (TQFT's) [2] for these manifolds. Given a $2$-dimensional oriented manifold without boundary, $S$, and an orientation-preserving automorphism $\varphi :S\rightarrow S$, the self-gluing of the cylinder $S\times I$, where $I$ is the standard closed unit interval, is a $3$-dimensional manifold $S_{\varphi }:=\frac{S\times I}{\sim _{\varphi }}$ known as a Stallings manifold, where $\sim _{\varphi }$ is the relation generated by the relation $\left(x,0\right) \sim \left( \varphi (x),1\right)$. A fundamental feature of TQFT is the gluing together of two spaces along one or more boundary components. Our TQFT approach [3,4] (in [4] this approach was applied in the geometric context of gerbes) describes equally well the self-gluing of a single space.por
dc.identifier.citationAn Invariant for Stallings Manifolds from a TQFT, Vol. Abstracts - Topology, ICM, 2006.por
dc.identifier.isbn978-3-03719-022-7
dc.identifier.otherAUT: PSE00609;
dc.identifier.urihttp://hdl.handle.net/10400.1/4448
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherICMpor
dc.subjectTQFT'spor
dc.subjectCategoriespor
dc.subjectStallings Manifoldspor
dc.titleAn invariant for stallings manifolds from a TQFTpor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlaceMadridpor
oaire.citation.endPage304por
oaire.citation.startPage304por
oaire.citation.titleInternational Congress of Mathematicianspor
oaire.citation.volumeAbstracts-Topologypor
rcaap.rightsopenAccesspor
rcaap.typeconferenceObjectpor

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
SemiaoP_ICM_Sapientia.pdf
Size:
72.33 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: