Name: | Description: | Size: | Format: | |
---|---|---|---|---|
1.42 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
This research investigates the dynamics of the axial
tidal flow and residual circulation at the lower Guadiana
Estuary, south Portugal, a narrow mesotidal estuary with low
freshwater inputs. Current data were collected near the deepest
part of the channel for 21 months and across the channel
during two (spring and neap) tidal cycles. Results indicate
that at the deep channel, depth-averaged currents are stronger
and longer during the ebb at spring and during the flood at
neap, resulting in opposite water transport directions at a
fortnightly time scale. The net water transport across the entire
channel is up-estuary at spring and down-estuary at neap, i.e.,
opposite to the one at the deep channel. At spring tide, when
the estuary is considered to be well mixed, the observed
pattern of circulation (outflow in the deep channel, inflow
over the shoals) results from the combination of the Stokes
transport and compensating return flow, which varies laterally
with the bathymetry. At neap tide (in particular for those of
lowest amplitude each month), inflows at the deep channel are
consistently associated with the development of gravitational
circulation. Comparisons with previous studies suggest that
the baroclinic pressure gradient (rather than internal tidal
asymmetries) is the main driver of the residual water transport.
Our observations also indicate that the flushing out of the
water accumulated up-estuary (at spring) may also produce
strong unidirectional barotropic outflow across the entire
channel around neap tide.
Description
Keywords
Mass transport velocity Stokes transport Estuarine circulation Spring–neap variability