Repository logo
 
Publication

Decoding the future: proposing an interpretable machine learning model for hotel occupancy forecasting using principal component analysis

dc.contributor.authorContessi, Daniele
dc.contributor.authorViverit, Luciano
dc.contributor.authorNobre Pereira, Luis
dc.contributor.authorHeo, Cindy Yoonjoung
dc.date.accessioned2024-09-04T10:14:21Z
dc.date.available2024-09-04T10:14:21Z
dc.date.issued2024-08
dc.description.abstractAccurate hotel occupancy forecasting is vital for optimizing hotel revenue, yet interpretable machine learning tools lack extensive research. This paper presents a two-step approach utilizing historical and advanced booking data. Principal Components Analysis (PCA) groups similar patterns in booking curves, followed by a pickup forecasting model to predict occupancy. Evaluating the approach using real booking data from three European hotels (2018 -2022), it outperformed two benchmarks: classical additive pickup and clustering-based pickup methods. Empirical results demonstrate the superiority of PCA-based methods across all hotels and forecasting horizons. Additionally, incorporating Average Daily Rates into PCA enhances daily hotel demand forecasts, offering potential for enhanced predictions with business operational information in a low-dimensional space.eng
dc.identifier.doi10.1016/j.ijhm.2024.103802
dc.identifier.issn0278-4319
dc.identifier.urihttp://hdl.handle.net/10400.1/25839
dc.language.isoeng
dc.peerreviewedyes
dc.publisherElsevier
dc.relationResearch Centre for Tourism, Sustainability and Well-being
dc.relation.ispartofInternational Journal of Hospitality Management
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectHotel Demand
dc.subjectForecasting
dc.subjectMachine learning
dc.subjectPrincipal components analysis
dc.subjectAdditive pickup method
dc.titleDecoding the future: proposing an interpretable machine learning model for hotel occupancy forecasting using principal component analysiseng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Centre for Tourism, Sustainability and Well-being
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UIDB%2F04020%2F2020/PT
oaire.citation.startPage103802
oaire.citation.titleInternational Journal of Hospitality Management
oaire.citation.volume121
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameNobre Pereira
person.givenNameLuis
person.identifier.ciencia-id6114-E329-972E
person.identifier.orcid0000-0003-0917-7163
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublication090a6604-b604-414b-a8d2-c4dc731b7b51
relation.isAuthorOfPublication.latestForDiscovery090a6604-b604-414b-a8d2-c4dc731b7b51
relation.isProjectOfPublicationfa579efb-63c0-486e-b05d-859542b73647
relation.isProjectOfPublication.latestForDiscoveryfa579efb-63c0-486e-b05d-859542b73647

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0278431924001142-main.pdf
Size:
8.78 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: