Name: | Description: | Size: | Format: | |
---|---|---|---|---|
5.46 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
A busca pelo aumento da procura de informação preciosa e o aumento do volume de dados
não estruturados, faz com que se procurem soluções para o tratamento dessa informação. A
integração de estratégias personalizadas de recolha de informação será essencial e é parte
integrante nas soluções de onde resultará um aumento de eficiência e rapidez dos processos
utilizados na indústria.
O elevado volume de trocas de informações digitais por parte das empresas, torna o acesso
às mesmas essencial e de extrema importância.
Essa dificuldade pode ser compensada com a utilização de técnicas de mineração de dados
e mineração de textos, que permitem a recolha de informação minimizando os custos e tempo
despendido na procura de dados e padrões.
O presente trabalho consiste na deteção de textos e padrões de registos de ações
provenientes de análises organizacionais. Para tal, foi tido em consideração os processos de
agrupamento e de regra de associação, recorrendo a técnicas de pré-processamento de texto,
processo de obtenção de agrupamento e classificação dos agrupamentos e regras de associação
com recurso a utilização da ferramenta Rapidminer Studio ®.
Os modelos desenvolvidos permitiram obter simulações de cenários que considerem o
agrupamento de diferentes ações desenvolvidas por cada ator sendo estas designadas por
contextos pessoais, e o agrupamento de ações desenvolvidas por grupo de atores, designado
por contextos interpessoais. Como forma de melhorar a análise interpessoal recorreu-se a outra
técnica: a regra de associação para utilização nas ações de contexto interpessoais.
A utilização destas técnicas permitirá a avaliação de cada cenário utilizando parâmetros de
similaridades e cálculos de distância entre conjuntos de dados.
The search for an increase in the demand for precious information and an increase in the volume of unstructured data, makes it necessary to search solutions for the treatment of information. The integration of personalized information collection strategies will be essential and is an integral part of the solutions which will result in an increase in efficiency and speed of the processes used in the industry. The high volume of exchanges of digital information by companies, makes access to them essential and extremely important. This difficulty can be offset with the use of data mining and text mining techniques, which allow the collection of information minimizing costs and time spent searching for data and standards. The present work consists of detecting texts and patterns of action records from organizational analyzes. For this, the grouping and association rule processes were taken into association, using text pre-processing techniques, the process of obtaining grouping and classification of clusters and association rules using the Rapidminer Studio ® tool. The developed models allowed to obtain simulations of scenarios that consider the grouping of different actions developed by each actor, which are designated by personal contexts, and the grouping of actions developed by a group of actors, designated by interpersonal contexts. To improve interpersonal analysis, another technique was used: the association rule for use in interpersonal context actions. The use of these techniques will allow the evaluation of each scenario using parameters of similarities and calculations of distance between data sets.
The search for an increase in the demand for precious information and an increase in the volume of unstructured data, makes it necessary to search solutions for the treatment of information. The integration of personalized information collection strategies will be essential and is an integral part of the solutions which will result in an increase in efficiency and speed of the processes used in the industry. The high volume of exchanges of digital information by companies, makes access to them essential and extremely important. This difficulty can be offset with the use of data mining and text mining techniques, which allow the collection of information minimizing costs and time spent searching for data and standards. The present work consists of detecting texts and patterns of action records from organizational analyzes. For this, the grouping and association rule processes were taken into association, using text pre-processing techniques, the process of obtaining grouping and classification of clusters and association rules using the Rapidminer Studio ® tool. The developed models allowed to obtain simulations of scenarios that consider the grouping of different actions developed by each actor, which are designated by personal contexts, and the grouping of actions developed by a group of actors, designated by interpersonal contexts. To improve interpersonal analysis, another technique was used: the association rule for use in interpersonal context actions. The use of these techniques will allow the evaluation of each scenario using parameters of similarities and calculations of distance between data sets.
Description
Keywords
Mineração de dados Mineração de textos Padronização de dados Agrupamento Regra de associação Classificação