Name: | Description: | Size: | Format: | |
---|---|---|---|---|
14.39 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
As technology and our understanding of the human brain evolve, the idea of creating
robots that behave and learn like humans seems to get more and more attention.
However, although that knowledge and computational power are constantly growing
we still have much to learn to be able to create such machines. Nonetheless, that
does not mean we cannot try to validate our knowledge by creating biologically
inspired models to mimic some of our brain processes and use them for robotics
applications.
In this thesis several biologically inspired models for vision are presented: a
keypoint descriptor based on cortical cell responses that allows to create binary
codes which can be used to represent speci c image regions; and a stereo vision
model based on cortical cell responses and visual saliency based on color, disparity
and motion. Active vision is achieved by combining these vision modules with an
attractor dynamics approach for head pan control.
Although biologically inspired models are usually very heavy in terms of processing
power, these models were designed to be lightweight so that they can be
tested for real-time robot navigation, object recognition and vision steering. The
developed vision modules were tested on a child-sized robot, which uses only visual
information to navigate, to detect obstacles and to recognize objects in real time.
The biologically inspired visual system is integrated with a cognitive architecture,
which combines vision with short- and long-term memory for simultaneous localization
and mapping (SLAM). Motor control for navigation is also done using attractor
dynamics.
Description
Tese de doutoramento, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016
Keywords
Keypoint descriptors Cognitive robotics Stereo vision Active vision SLAM Object recognition