Repository logo
 
Publication

Exploiting the functional training approach in Takagi-Sugeno Neuro-fuzzy Systems

dc.contributor.authorCabrita, Cristiano Lourenço
dc.contributor.authorRuano, Antonio
dc.contributor.authorFerreira, P. M.
dc.contributor.authorKóczy, László T.
dc.date.accessioned2013-01-29T14:28:49Z
dc.date.available2013-01-29T14:28:49Z
dc.date.issued2013
dc.date.updated2013-01-26T16:00:37Z
dc.description.abstractWhen used for function approximation purposes, neural networks and neuro-fuzzy systems belong to a class of models whose parameters can be separated into linear and nonlinear, according to their influence in the model output. This concept of parameter separability can also be applied when the training problem is formulated as the minimization of the integral of the (functional) squared error, over the input domain. Using this approach, the computation of the derivatives involves terms that are dependent only on the model and the input domain, and terms which are the projection of the target function on the basis functions and on their derivatives with respect to the nonlinear parameters, over the input domain. These later terms can be numerically computed with the data. The use of the functional approach is introduced here for Takagi-Sugeno models. An example shows that this approach obtains better results than the standard, discrete technique, as the performance surface employed is more similar to the one obtained with the function underlying the data. In some cases, as shown in the example, a complete analytical solution can be found.por
dc.identifier.citationCabrita, Cristiano L.; Ruano, António E.; Ferreira, Pedro M.; Kóczy, László T. Exploiting the Functional Training Approach in Takagi-Sugeno Neuro-fuzzy Systems, In Soft Computing Applications, 543-559, ISBN: 978-3-642-33940-0. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.por
dc.identifier.isbn978-3-642-33940-0
dc.identifier.otherAUT: CCA01443; ARU00698;
dc.identifier.urihttp://hdl.handle.net/10400.1/2132
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherSpringer Berlin Heidelbergpor
dc.subjectTakagi-Sugeno modelspor
dc.subjectFunctional trainingpor
dc.subjectParameter separabilitypor
dc.titleExploiting the functional training approach in Takagi-Sugeno Neuro-fuzzy Systemspor
dc.typebook part
dspace.entity.typePublication
oaire.citation.conferencePlaceBerlin, Heidelbergpor
oaire.citation.endPage559por
oaire.citation.startPage543por
oaire.citation.titleSoft Computing Applicationspor
person.familyNameCabrita
person.familyNameRuano
person.givenNameCristiano Lourenço
person.givenNameAntonio
person.identifier.ciencia-idFF1E-13A0-A269
person.identifier.orcid0000-0003-4946-0465
person.identifier.orcid0000-0002-6308-8666
person.identifier.ridB-4135-2008
person.identifier.scopus-author-id55958626100
person.identifier.scopus-author-id7004284159
rcaap.rightsrestrictedAccesspor
rcaap.typebookPartpor
relation.isAuthorOfPublication081b091f-c9fa-470a-9a28-51fe4c85864a
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication.latestForDiscovery13813664-b68b-40aa-97a9-91481a31ebf2

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
01950543.pdf
Size:
1.74 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: