Repository logo
 
Loading...
Thumbnail Image
Publication

Skin mucus and blood plasma as non-lethal sources of malnutrition protein biomarkers in meagre (Argyrosomus regius)

Use this identifier to reference this record.
Name:Description:Size:Format: 
1-s2.0-S1874391925000594-main.pdf5.43 MBAdobe PDF Download

Advisor(s)

Abstract(s)

Developing dietary formulations for aquaculture that meet nutritional requirements is essential to production, as nutrition is key for fish growth and health. However, novel dietary formulations may induce malnutrition, which is complex to evaluate and often requires animal sacrifice. Therefore, finding reliable non-lethal biomarkers to diagnose malnutrition in fish is important. This study aimed to obtain vital information on potential non-lethal biomarkers from blood plasma and skin mucus to assess the fish's nutritional status using meagre (Argyrosomus regius) juveniles. For that purpose, a nutritional challenge was performed with fish fed a fish meal (FM) and fish- oil (FO) based control diet (55.1 % FM; 11 % FO, CTRL), a challenging diet (15 % FM; 7 % FO, CD), and a highly challenging diet (5 % FM; 5 % FO, ED), which, despite being nutritionally complete, may pose digestive and physiological challenges to carnivorous species. Diets significantly affected blood parameters, except for leukocyte counts, peroxidase activity, and immunoglobulin levels. Overall, blood parameters showed potential as non-lethal biomarkers to accurately identify signs of malnutrition. Meagre's plasma and skin mucus proteomes provided crucial information on the species' reaction to malnutrition, and 29 proteins connected to various physiological functions such as metabolism, development and immunity showed potential as non-lethal biomarkers. Significance: The significance of this study lies in the establishment of potential non-lethal biomarkers for diagnosing malnutrition in fish. The results demonstrate that immunological, haematological, and biochemical parameters measured in fish blood can reveal signs of nutritional deficiencies. The findings further highlight that the proteomes of plasma and skin mucus provide valuable information about the fish's nutritional status. Notably, 29 proteins identified in this study, associated with various physiological functions, exhibit biomarker potential and warrant consideration in future research in the field of aquaculture nutrition. Moreover, the research provides critical insights into the proteome of meagre (Argyrosomus regius), enhancing our understanding of the species and contributing to the future improvement of its aquaculture production.

Description

Keywords

Nutrition Proteins Aquaculture Physiology Health

Citation

Organizational Units

Journal Issue