Repository logo
 
Publication

Parallel implementation of an adaptive generalized predictive control algorithm

dc.contributor.authorDaniel, H. A.
dc.contributor.authorRuano, Antonio
dc.date.accessioned2013-02-13T09:48:42Z
dc.date.available2013-02-13T09:48:42Z
dc.date.issued1996
dc.date.updated2013-01-28T15:51:01Z
dc.description.abstractThe Adaptive Generalized Predictive Control (GPC) algorithm can be speeded up using parallel processing. Since the GPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.pt_PT
dc.identifier.citationDaniel, H. A.; Ruano, A. E. Parallel Implementation of an Adaptive Generalized Predictive Control Algorithm, Trabalho apresentado em 2nd Internacional Meeting on Vector and Parallel Processing (VECPAR’96), In 2nd Internacional Meeting on Vector and Parallel Processing (VECPAR’96), Porto, 1996.por
dc.identifier.otherAUT: HDA01050; ARU00698;
dc.identifier.urihttp://hdl.handle.net/10400.1/2333
dc.language.isoengpor
dc.peerreviewedyespor
dc.titleParallel implementation of an adaptive generalized predictive control algorithmpor
dc.typeconference object
dspace.entity.typePublication
oaire.citation.conferencePlacePortopor
oaire.citation.endPage6por
oaire.citation.startPage1por
oaire.citation.title2nd Internacional Meeting on Vector and Parallel Processing (VECPAR’96)por
person.familyNameRuano
person.givenNameAntonio
person.identifier.orcid0000-0002-6308-8666
person.identifier.ridB-4135-2008
person.identifier.scopus-author-id7004284159
rcaap.rightsrestrictedAccesspor
rcaap.typeconferenceObjectpor
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication.latestForDiscovery13813664-b68b-40aa-97a9-91481a31ebf2

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
53.pdf
Size:
556.71 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: