Repository logo
 
Loading...
Thumbnail Image
Publication

Antioxidant activity and inhibitory effect of L. viridis extract on Fe2+-induced lipid peroxidation in brain homogenates

Use this identifier to reference this record.

Advisor(s)

Abstract(s)

The brain is particularly susceptible to oxidative stress damaging effects due such events as the high consumption of oxygen, limited concentration of antioxidants and a relatively high degree of polyunsaturated fatty acids that are particularly good substrates for peroxidation reactions [1–3]. Oxidative stress could lead to damage biological target molecules, affecting the cellular function and integrity [4]. The ability of natural antioxidants, mainly phenolic compounds, to protect cells from oxidative stress has been previously demonstrated [5]. In this work, the methanol extract from Lavandula viridis L'Hér. (Lamiaceae), a xerophytic aromatic shrub endemic to the south-west Iberian Peninsula [6], was investigated for its effect on deoxyribose degradation, its reducing properties, Fe2+-chelating ability and total phenol content. The capacity of this extract to prevent Fe2+-induced lipid peroxidation in mouse brain (in vitro) was also evaluated. L. viridis extract showed Fe2+ chelating activity, reducing power and the ability to prevent Fe2+/H2O2-induced decomposition of deoxyribose in a dose-dependent manner. This extract also revealed a high phenol content (893.01±17.09µmol gallic acid equivalents/g extract) evaluated by Folin-Ciocalteu method. Moreover, in brain homogenates, the methanol extract of L. viridis caused a high decrease in the MDA production in both the basal and the Fe2+-induced lipid peroxidation. The effective protective properties of L. viridis could be attributed to its higher phenol content, Fe2+ chelating ability, reducing properties and HO· radical scavenging ability. The findings suggest that methanol extract from L. viridis could be a potential source of natural antioxidants.

Description

Keywords

Pedagogical Context

Citation

Research Projects

Organizational Units

Journal Issue

Publisher

Georg Thieme Verlag

CC License

Altmetrics