Name: | Description: | Size: | Format: | |
---|---|---|---|---|
2.8 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Recently, a global analysis of the structure-activity-relationship of a series of polyoxometalates (POMs) revealed that the most active POMs were ascribed to be polyoxovanadates (POVs), especially decavanadate (V-10), which was very active against certain bacteria (Bijelic et al., Chem. Commun., 2018). The present study explores this observation and compares the effects of three POVs namely MnV11, MnV13 and V-10 against Escherichia coli growth. It was observed that MnV11 presents the lowest growth inhibition (GI(50)) value for Escherichia coli followed by the MnV13 compound, being about 2 times lower than that of V-10 respectively, the values obtained were 0.21, 0.27 and 0.58 mM. All three compounds were more effective than vanadate alone (GI(50) = 1.1 mM) and also than decaniobate, Nb-10 (GI(50) > 10 mM), an isostructural POM of V-10. However, the POVs exhibiting the highest antibacterial activity (MnV11) were shown to have the lowest Ca2+-ATPase inhibitor capacity (IC50 = 58 mM) whereas decavanadate, which was also very active against this membranar ATPase (IC50 = 15 mM), was less active against bacterial growth, suggesting that POV inhibition of ion pumps might not be associated with the inhibition of Escherichia coli growth.
Description
Keywords
Antibacterial activity Decavanadate interactions Polyoxometalate Vanadate Complex Binding Polyoxotungstates Decaniobate Antitumor Peptides
Citation
Publisher
Royal Society of Chemistry