Name: | Description: | Size: | Format: | |
---|---|---|---|---|
64.66 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
The nonlinear dynamics of optoelectronic integrated circuit (OEIC) oscillators comprising
semiconductor resonant tunneling diode (RTD) nanoelectronic quantum devices
has been investigated. The RTD devices used in this study oscillate in the microwave
band frequency due to the negative di erential conductance (NDC) of their nonlinear
current voltage characteristics, which is preserved in the optoelectronic circuit. The
aim was to study RTD circuits incorporating laser diodes and photo-detectors to obtain
novel dynamical operation regimes in both electrical and optical domains taking
advantage of RTD's NDC characteristic.
Experimental implementation and characterization of RTD-OEICs was realized in
parallel with the development of computational numerical models. The numerical models
were based on ordinary and delay di erential equations consisting of a Li enard's
RTD oscillator and laser diode single mode rate equations that allowed the analysis
of the dynamics of RTD-OEICs. In this work, several regimes of operation are
demonstrated, both experimentally and numerically, including generation of voltage
controlled microwave oscillations and synchronization to optical and electrical external
signals providing stable and low phase noise output signals, and generation of complex
oscillations that are characteristic of high-dimensional chaos.
Optoelectronic integrated circuits using RTD oscillators are interesting alternatives
for more e cient synchronization, generation of stable and low phase noise microwave
signals, electrical/optical conversion, and for new ways of optoelectronic chaos generation.
This can lead to simpli cation of communication systems by boosting circuits
speed while reducing the power and number of components. The applications of
RTD-OEICs include operation as optoelectronic voltage controlled oscillators in clock
recovery circuit systems, in wireless-photonics communication systems, or in secure
communication systems using chaotic waveforms.
Description
Tese de dout., Física, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2012