Repository logo
 
Publication

Tri-Collab: a machine learning project to leverage innovation ecosystems in Portugal

dc.contributor.authorMarujo, Ângelo
dc.contributor.authorAfonso, Bruno
dc.contributor.authorMartins, Inês
dc.contributor.authorPires, Lisandro
dc.contributor.authorFernandes, Silvia C. Pinto de Brito
dc.date.accessioned2025-06-26T12:12:56Z
dc.date.available2025-06-26T12:12:56Z
dc.date.issued2025-05-20
dc.description.abstractThis project consists of a digital platform named Tri-Collab, where investors, entrepreneurs, and other agents (mainly talents) can cooperate on their ideas and eventually co-create. It is a digital means for this triad of actors (among other potential ones) to better adjust their requirements. It includes an app that easily communicates with a database of projects, innovation agents and their profiles, and the originality lies in the matching algorithm. Thus, co-creation can have better support through this assertive interconnection of players and their resources. This work also highlights the usefulness of the Canvas Business Model in structuring the idea and its dashboard, allowing a comprehensive view of channels, challenges and gains. Also, the potential of machine learning in improving matchmaking platforms is discussed, especially when technological advancements allow for forecasts and match people at scale.eng
dc.identifier.doi10.3390/bdcc9050139
dc.identifier.issn2504-2289
dc.identifier.urihttp://hdl.handle.net/10400.1/27302
dc.language.isoeng
dc.peerreviewedyes
dc.publisherMDPI
dc.relationResearch Center for Spatial and Organizational Dynamics
dc.relation.ispartofBig Data and Cognitive Computing
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectInnovation
dc.subjectMachine learning
dc.subjectDigital platform
dc.subjectCollaboration
dc.subjectCo-creation
dc.titleTri-Collab: a machine learning project to leverage innovation ecosystems in Portugaleng
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleResearch Center for Spatial and Organizational Dynamics
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/6817 - DCRRNI ID/UID%2FSOC%2F04020%2F2019/PT
oaire.citation.issue5
oaire.citation.startPage139
oaire.citation.titleBig Data and Cognitive Computing
oaire.citation.volume9
oaire.fundingStream6817 - DCRRNI ID
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85
person.familyNameFernandes
person.givenNameSilvia C. Pinto de Brito
person.identifier1588711
person.identifier.ciencia-id9217-B2AC-769A
person.identifier.orcid0000-0002-1699-5415
person.identifier.scopus-author-id36720504700
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
relation.isAuthorOfPublicatione47354a0-f174-43ac-bab2-398103a8c296
relation.isAuthorOfPublication.latestForDiscoverye47354a0-f174-43ac-bab2-398103a8c296
relation.isProjectOfPublication2f51e7d9-5b96-44a5-8f63-fa80b771ee6a
relation.isProjectOfPublication.latestForDiscovery2f51e7d9-5b96-44a5-8f63-fa80b771ee6a

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BDCC-09-00139 (1).pdf
Size:
1.11 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.46 KB
Format:
Item-specific license agreed upon to submission
Description: