Browsing by Author "Conceição, Luís E. C."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- Development and application of a mechanistic nutrient-based model for precision fish farmingPublication . Soares, Filipe M. R. C.; Nobre, Ana M. D.; Raposo, Andreia I. G.; Mendes, Rodrigo; Engrola, Sofia; Rema, Paulo J. A. P.; Conceição, Luís E. C.; Silva, Tomé S.This manuscript describes and evaluates the FEEDNETICS model, a detailed mechanistic nutrient-based model that has been developed to be used as a data interpretation and decisionsupport tool by fish farmers, aquafeed producers, aquaculture consultants and researchers. The modelling framework comprises two main components: (i) fish model, that simulates at the individual level the fish growth, composition, and nutrient utilization, following basic physical principles and prior information on the organization and control of biochemical/metabolic processes; and (ii) farm model, that upscales all information to the population level. The model was calibrated and validated for five commercially relevant farmed fish species, i.e., gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax), Atlantic salmon (Salmo salar), rainbow trout (Oncorhynchus mykiss), and Nile tilapia (Oreochromis niloticus), using data sets covering a wide range of rearing and feeding conditions. The results of the validation of the model for fish growth are consistent between species, presenting a mean absolute percentage error (MAPE) between 11.7 and 13.8%. Several uses cases are presented, illustrating how this tool can be used to complement experimental trial design and interpretation, and to evaluate nutritional and environmental effects at the farm level. FEEDNETICS provides a means of transforming data into useful information, thus contributing to more efficient fish farming
- Dietary curcumin promotes gilthead seabream larvae digestive capacity and modulates oxidative statusPublication . Xavier, Maria João; Dardengo, Gian Marco; Navarro-Guillén, Carmen; Lopes, Andre D.; Colen, R.; Valente, Luisa M. P.; Conceição, Luís E. C.; Engrola, SofiaThe larval stage is highly prone to stress due to the ontogenetic and metabolic alterations occurring in fish. Curcumin inclusion in diets has been shown to improve growth by modulating oxidative status, immune response, and/or feed digestibility in several fish species. The aim of the present work was to assess if dietary curcumin could promote marine fish larvae digestive maturation and improve robustness. Gilthead seabream larvae were fed a diet supplemented with curcumin at dose of 0 (CTRL), 1.5 (LOW), or 3.0 g/Kg feed for 27 days. From 4 to 24 days after hatching (DAH), no differences were observed in growth performance. At the end of the experiment (31 DAH) LOW larvae had a better condition factor than CTRL fish. Moreover, HIGH larvae showed higher trypsin and chymotrypsin activity when compared to CTRL fish. LOW and HIGH larvae were able to maintain the mitochondrial reactive oxygen species production during development, in contrast to CTRL larvae. In conclusion, curcumin supplementation seems to promote larvae digestive capacity and modulate the oxidative status during ontogeny. Furthermore, the present results provide new insights on the impacts of dietary antioxidants on marine larvae development and a possible improvement of robustness in the short and long term.
- Enhanced dietary formulation to mitigate winter thermal stress in gilthead sea bream (Sparus aurata): a 2D-DIGE plasma proteome studyPublication . Schrama, Denise; Richard, Nadège; Silva, Tomé S.; Figueiredo, Filipe A.; Conceição, Luís E. C.; Burchmore, Richard; Eckersall, David; Rodrigues, PedroLow water temperatures during winter are common in farming of gilthead sea bream in the Mediterranean. This causes metabolic disorders that in extreme cases can lead to a syndrome called "winter disease." An improved immunostimulatory nutritional status might mitigate the effects of this thermal metabolic stress. A trial was set up to assess the effects of two different diets on gilthead sea bream physiology and nutritional state through plasma proteome and metabolites. Four groups of 25 adult gilthead sea bream were reared during winter months, being fed either with a control diet (CTRL) or with a diet called "winter feed" (WF). Proteome results show a slightly higher number of proteins upregulated in plasma of fish fed the WF. These proteins are mostly involved in the immune system and cell protection mechanisms. Lipid metabolism was also affected, as shown both by plasma proteome and by the cholesterol plasma levels. Overall, the winter feed diet tested seems to have positive effects in terms of fish condition and nutritional status, reducing the metabolic effects of thermal stress.
- ficoEst – a tool to estimate the body composition of farmed fishPublication . Soares, Filipe; Raposo, Andreia; Mendes, Rodrigo; Azevedo, Marina; Dias, Deborah; Nobre, Ana; Conceição, Luís E. C.; Silva, ToméficoEst - Fish Composition Estimator is a public web tool to estimate the whole-body proximate composition of farmed fish (https://webtools.sparos.pt/ficoest/). The tool was designed for researchers in fish nutrition and fish farmers, and is available for six commercially relevant species: gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax), meagre (Argyrosomus regius), rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), and Nile tilapia (Oreochromis niloticus). ficoEst uses three different types of mathematical models (BC1, BC2, and BC3) to estimate the body composition of fish in terms of crude protein, crude lipids, water, ash, phosphorus, and energy. The models differ in the input data used to perform the estimates. BC1 models consider only body weight, BC2 models consider both body weight and water, and BC3 models consider body weight, water, and ash as inputs. The model evaluation results demonstrate that considering water and ash as additional inputs to body weight (BC3 models) significantly improves the accuracy in predicting some body composition components, such as crude lipids (e.g., up to 67.9 % and 28.1 % more accurate, compared to BC1 and BC2 models, respectively, depending on the species considered). ficoEst can be used as a complementary tool to analytical methods to obtain additional information about fish body composition. As a public web tool, ficoEst has the potential to be a valuable resource for researchers and fish farmers interested in estimating the body composition of farmed fish.
- Immune status and hepatic antioxidant capacity of Gilthead Seabream Sparus aurata juveniles fed yeast and microalga derived β-glucansPublication . Reis, Bruno; Gonçalves, Ana Teresa; Santos, Paulo; Sardinha, Manuel; Conceição, Luís E. C.; Serradeiro, Renata; Pérez-Sánchez, Jaume; Calduch-Giner, Josep; Schmid-Staiger, Ulrike; Frick, Konstantin; Dias, Jorge; Costas, BenjamínThis work aimed to evaluate the effects of dietary supplementation with β-glucans extracted from yeast (Saccharomyces cerevisiae) and microalga (Phaeodactylum tricornutum) on gene expression, oxidative stress biomarkers and plasma immune parameters in gilthead seabream (Sparus aurata) juveniles. A practical commercial diet was used as the control (CTRL), and three others based on CTRL were further supplemented with different β-glucan extracts. One was derived from S. cerevisiae (diet MG) and two different extracts of 21% and 37% P. tricornutum-derived β-glucans (defined as Phaeo21 and Phaeo37), to give a final 0.06% β-glucan dietary concentration. Quadruplicate groups of 95 gilthead seabream (initial body weight: 4.1 ± 0.1 g) were fed to satiation three times a day for 8 weeks in a pulse-feeding regimen, with experimental diets intercalated with the CTRL dietary treatment every 2 weeks. After 8 weeks of feeding, all groups showed equal growth performance and no changes were found in plasma innate immune status. Nonetheless, fish groups fed β-glucans supplemented diets showed an improved anti-oxidant status compared to those fed CTRL at both sampling points (i.e., 2 and 8 weeks). The intestinal gene expression analysis highlighted the immunomodulatory role of Phaeo37 diet after 8 weeks, inducing an immune tolerance effect in gilthead seabream intestine, and a general down-regulation of immune-related gene expression. In conclusion, the results suggest that the dietary pulse administration of a P. tricornutum 37% enriched-β-glucans extract might be used as a counter-measure in a context of gut inflammation, due to its immune-tolerant and anti-oxidative effects.
- Metabolic fate is defined by amino acid nature in gilthead seabream fed different diet formulationsPublication . Teodósio, Rita; Aragão, Cláudia; Conceição, Luís E. C.; Dias, Jorge; Engrola, SofiaThe sustainability of the Aquaculture industry relies on optimising diets to promote nitrogen retention and maximise fish growth. The aim of this study was to assess how different dietary formulations influence the bioavailability and metabolic fate of distinct amino acids in gilthead seabream juveniles. Amino acids (lysine, tryptophan, and methionine) were selected based on their ketogenic and/or glucogenic nature. Seabream were fed practical diets with different protein (44 and 40%) and lipid contents (21 and 18%): 44P21L, 44P18L, 40P21L, and 40P18L. After three weeks of feeding, the fish were tube-fed the correspondent diet labelled with 14C-lysine, 14C-tryptophan, or 14C-methionine. The amino acid utilisation was determined based on the evacuation, retention in gut, liver, and muscle, and the catabolism of the tracer. The metabolic fate of amino acids was mainly determined by their nature. Tryptophan was significantly more evacuated than lysine or methionine, indicating a lower availability for metabolic purposes. Methionine was more retained in muscle, indicating its higher availability. Lysine was mainly catabolised, suggesting that catabolism is preferentially ketogenic, even when this amino acid is deficient in diets. This study underpins the importance of optimising diets considering the amino acids’ bioavailability and metabolic fate to maximise protein retention in fish.
- Socially acceptable feed formulations may impact the voluntary feed intake and growth, but not robustness of Nile Tilapia (Oreochromis niloticus)Publication . Mendes, Rodrigo; Rena, Paulo; Dias, Jorge; Fachadas Gato Coelho Gonçalves, Ana Teresa; Teodósio, Rita; Engrola, Sofia; Sánchez-Vázquez, Francisco J.; Conceição, Luís E. C.Society is becoming more demanding with aquaculture’s environmental footprint and animal wellbeing. In order to potentially mitigate these concerns, feed formulations could be based on eco-efficient (circular economy-driven) or organic ingredients. This study aimed to investigate the growth performance, feed utilization, and health status of juvenile Nile tilapia (Oreochromis niloticus) when fed with such feeds. The growth trial lasted for 8 weeks, and fish had an initial weight of 31.0 ± 0.5 g (mean ± SD). Fish were fed until visual satiation, in quadruplicate, with one of three isonitrogenous and isoenergetic experimental feeds: a commercial-like feed without fishmeal (PD), a diet based on ingredients compatible with organic certification (ORG), or a feed formulated using circular economy-driven subproducts and emergent ingredients (ECO). Fish fed ECO showed a tendency for decreased feed intake, while ORG fish significantly reduced their intake compared to those fed PD. Consequently, fish fed ECO (62.7 ± 5.4 g) exhibited almost half the growth than those fed PD (107.8 ± 6.1 g), while ORG fish almost did not increase their weight (32.7 ± 1.3 g). ECO and ORG diets had a lower digestibility for protein, lipid, and energy when compared to PD. Feed utilization of fish fed ECO or ORG was also lower than those fed PD. From the health-related genes analyzed, only glutathione reductase (gsr) showed statistically significant differences, being more expressed in fish-fed ECO than those fed PD. Thus, even when such novel formulations induced extreme effects on voluntary feed intake, their impact was noted only in fish growth, but not in robustness.
- Sustainable fish meal-free diets for gilthead sea bream (Sparus aurata): integrated biomarker response to assess the effects on growth performance, lipid metabolism, antioxidant defense and immunological statusPublication . Fernandes, Ana M.; Calduch-Giner, Josep Àlvar; Pereira, Gabriella V.; Fachadas Gato Coelho Gonçalves, Ana Teresa; Dias, Jorge; Johansen, Johan; Silva, Tomé; Naya-Català, Fernando; Piazzon, Carla; Sitjà-Bobadilla, Ariadna; Costas, Benjamin; Conceição, Luís E. C.; Fernandes, Jorge M. O.; Pérez-Sánchez, JaumeThe growth of the aquaculture industry requires more sustainable and circular economy-driven aquafeed formulas. Thus, the goal of the present study was to assess in farmed gilthead sea bream (Sparus aurata L.) how different combinations of novel and conventional fish feed ingredients supported proper animal performance in terms of growth and physiological biomarkers of blood/liver/head kidney. A 77-day feeding trial was conducted with three experimental diets (PAP, with terrestrial processed animal protein from animal by-products; NOPAP, without processed animal protein from terrestrial animal by-products; MIX, a combination of alternative ingredients of PAP and NOPAP diets) and a commercial-type formulation (CTRL), and their effects on growth performance and markers of endocrine growth regulation, lipid metabolism, antioxidant defense and inflammatory condition were assessed at circulatory and tissue level (liver, head kidney). Growth performance was similar among all dietary treatments. However, fish fed the PAP diet displayed a lower feed conversion and protein efficiency, with intermediate values in MIX-fed fish. Such gradual variation in growth performance was supported by different biomarker signatures that delineated a lower risk of oxidation and inflammatory condition in NOPAP fish, in concurrence with an enhanced hepatic lipogenesis that did not represent a risk of lipoid liver degeneration.
- Taurine supplementation to Plant-Based Diets improves lipid metabolism in Senegalese SolePublication . Raquel Cêa de Aragão Teixeira, Cláudia; Teodósio, Rita; Colen, R.; Richard, Nadège; Rønnestad, Ivar; Dias, Jorge; Conceição, Luís E. C.; Ribeiro, LauraTaurine is a sulphur-containing amino acid with important physiological roles and a key compound for the synthesis of bile salts, which are essential for the emulsion and absorption of dietary lipids. This study aimed to evaluate the effects of taurine supplementation to low-fishmeal diets on the metabolism of taurine, bile acids, and lipids of Senegalese sole. A fishmeal (FM) and a plant-protein-based (PP0) diet were formulated, and the latter was supplemented with taurine at 0.5 and 1.5% (diets PP0.5 and PP1.5). Diets were assigned to triplicate tanks containing 35 fish (initial weight ~14 g) for 6 weeks. Fish from the PP0 treatment presented lower taurine and bile-acid concentrations compared with the FM treatment, and a downregulation of cyp7a1 and abcb11 was observed. Triolein catabolism decreased in PP0-fed fish, resulting in increased hepatic fat content and plasma triglycerides, while no effects on plasma cholesterol were observed. Taurine supplementation to plant-based diets resulted in a higher taurine accumulation in fish tissues, increased bile-acid concentration, and upregulation of cyp7a1 and abcb11. Hepatic fat content and plasma triglycerides decreased with increasing dietary taurine supplementation. Taurine supplementation mitigated part of the negative effects of plant-based diets, leading to better lipid utilisation.
