Browsing by Author "Roggatz, Christina C."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- First report of the nutritional profile and antioxidant potential of Holothuria arguinensis, a new resource for aquaculture in EuropePublication . Roggatz, Christina C.; Gonzalez-Wanguemert, Mercedes; Pereira, Hugo; Rodrigues, Maria Joao; F. G. M. Silva, Manuela; Barreira, Luísa; Varela, João; Custódio, LuísaThis work reports for the first time the nutritional profile and antioxidant potential of the edible sea cucumber Holothuria arguinensis from the North-eastern Atlantic. H. arguinensis has high levels of protein, with the amino acids profile dominated by alanine, glycine and proline and low lysine/arginine ratios. Its carbohydrate and energetic contents are also low as well as the total lipid levels, although its lipid profile is rich in polyunsaturated fatty acids (PUFA), especially arachidonic, eicosapentaenoic and docosahexaenoic acids. In addition, H. arguinensis has high levels of calcium. The water and ethanol extracts show ability to scavenge free radicals and to chelate copper and iron ions. Our results indicate that H. arguinensis has a balanced nutritional quality suitable for human consumption. In addition, it contains compounds with antioxidant potential; thus its intake can contribute for a healthy and well-balanced diet.
- First report of the nutritional profile and antioxidant potential of Holothuria arguinensis, a new resource for aquaculture in EuropePublication . Roggatz, Christina C.; Gonzalez-Wangueemert, Mercedes; Pereira, Hugo; Rodrigues, Maria Joao; F. G. M. Silva, Manuela; Barreira, Luísa; Varela, João; Custódio, LuísaThis work reports for the first time the nutritional profile and antioxidant potential of the edible sea cucumber Holothuria arguinensis from the North-eastern Atlantic. H. arguinensis has high levels of protein, with the amino acids profile dominated by alanine, glycine and proline and low lysine/arginine ratios. Its carbohydrate and energetic contents are also low as well as the total lipid levels, although its lipid profile is rich in polyunsaturated fatty acids (PUFA), especially arachidonic, eicosapentaenoic and docosahexaenoic acids. In addition, H. arguinensis has high levels of calcium. The water and ethanol extracts show ability to scavenge free radicals and to chelate copper and iron ions. Our results indicate that H. arguinensis has a balanced nutritional quality suitable for human consumption. In addition, it contains compounds with antioxidant potential; thus its intake can contribute for a healthy and well-balanced diet.[GRAPHICS].
- A new insight into the influence of habitat on the biochemical properties of three commercial sea cucumber speciesPublication . González-Wangüemert, Mercedes; Roggatz, Christina C.; Rodrigues, Maria Joao; Barreira, Luísa; Silva, Manuela; Custódio, LuísaThis work makes a comparative evaluation of the biochemical profile of three sea commercial cucumber species (Holothuria mammata, H. polii and H. tubulosa) caught from different locations of the Mediterranean Sea (SE Spain). All species had high levels of moisture (from 73.6% in H. mammata to 81.2% in H. tubulosa), crude ash (from 9.61% in H. mammata to 14.7% in H. tubulosa) and protein (3.01% in H. tubulosa to 11.1% in H. mammata). They also had a low fat content, from 0.21% in H. tubulosa to 0.55% in H. mammata. Holothuria polii had intermediate values between the other two species, for all considered variables. All species had adequate protein/lipid ratios (H. mammata, 20:1; H. polii, 23:1; H. tubulosa, 14:1) and low lipid levels, enriched in omega-3 polyunsaturated fatty acids, especially arachidonic acid. The fatty acid profile suggests that H. polii is feeding on sediments more influenced by terrestrial inputs than the remaining species. Holothuria mammata and H. tubulosa are feeding on marine food sources mainly, but also with some terrestrial influence. The most abundant amino acids detected were alanine, arginine, glutamic acid, and glycine. All species had similar contents of essential amino acids (EAA) and ratios of EAA/non-essential amino acids. Holothuria tubulosa had a high content of toxic metals including Cr, Pb and Ni. This work highlights differences in compositional characteristics between different species of the same genus (Holothuria) from different locations.
- Short- and medium-term exposure to ocean acidification reduces olfactory sensitivity in Gilthead SeabreamPublication . Velez, Zélia; Roggatz, Christina C.; Benoit, David M.; Hardege, Jörg D.; Hubbard, PeterThe effects of ocean acidification on fish are only partially understood. Studies on olfaction are mostly limited to behavioral alterations of coral reef fish; studies on temperate species and/or with economic importance are scarce. The current study evaluated the effects of short- and medium-term exposure to ocean acidification on the olfactory system of gilthead seabream (Spares aurata), and attempted to explain observed differences in sensitivity by changes in the protonation state of amino acid odorants. Short-term exposure to elevated PCO2 decreased olfactory sensitivity to some odorants, such as L-serine, L-leucine, L-arginine, L-glutamate, and conspecific intestinal fluid, but not to others, such as L-glutamine and conspecific bile fluid. Seabream were unable to compensate for high PCO2 levels in the medium term; after 4 weeks exposure to high PCO2 , the olfactory sensitivity remained lower in elevated PCO2 water. The decrease in olfactory sensitivity in high PCO2 water could be partly attributed to changes in the protonation state of the odorants and/or their receptor(s); we illustrate how protonation due to reduced pH causes changes in the charge distribution of odorant molecules, an essential component for ligand-receptor interaction. However, there are other mechanisms involved. At a histological level, the olfactory epithelium contained higher densities of mucus cells in fish kept in high CO2 water, and a shift in pH of the mucus they produced to more neutral. These differences suggest a physiological response of the olfactory epithelium to lower pH and/or high CO2 levels, but an inability to fully counteract the effects of acidification on olfactory sensitivity. Therefore, the current study provides evidence for a direct, medium term, global effect of ocean acidification on olfactory sensitivity in fish, and possibly other marine organisms, and suggests a partial explanatory mechanism.