Browsing by Author "Verbakel, F."
Now showing 1 - 6 of 6
Results Per Page
Sort Options
- Opto-electronic characterization of electron traps upon forming polymer oxide memory diodesPublication . Chen, Q.; Bory, Benjamin F.; Kiazadeh, Asal; Rocha, Paulo R. F.; Gomes, Henrique L.; Verbakel, F.; De Leeuw, Dago M.; Meskers, S. C. J.Metal-insulator-polymer diodes where the insulator is a thin oxide (Al2O3) layer are electroformed by applying a high bias. The initial stage is reversible and involves trapping of electrons near the oxide/polymer interface. The rate of charge trapping is limited by electron transport through the polymer. Detrapping of charge stored can be accomplished by illuminating with light under short-circuit conditions. The amount of stored charge is determined from the optically induced discharging current transient as a function of applied voltage and oxide thickness. When the charge density exceeds 8 1017/m2, an irreversible soft breakdown transition occurs to a non-volatile memory diode.
- Reproducible resistive switching in nonvolatile organic memoriesPublication . Verbakel, F.; Meskers, S. C. J.; Janssen, R. A. J.; Gomes, Henrique L.; Coelle, M.; Buechel, M.; de Leeuw, D. M.Resistive switching in nonvolatile, two terminal organic memories can be due to the presence of a native oxide layer at an aluminum electrode. Reproducible solid state memories can be realized by deliberately adding a thin sputtered Al2O3 layer to nominal electron-only, hole-only, and bipolar organic diodes. Before memory operation, the devices have to be formed at an electric field of 10(9) V/m, corresponding to soft breakdown of Al2O3. After forming, the structures show pronounced negative differential resistance and the local maximum in the current scales with the thickness of the oxide layer. The polymer acts as a current limiting series resistance.
- Sudden death of organic light-emitting diodesPublication . Rocha, P. R. F.; Gomes, Henrique L.; Asadi, K.; Katsouras, I.; Bory, B.; Verbakel, F.; van de Weijer, P.; de Leeuw, D. M.; Meskers, S. C. J.The degradation in light output of an Organic Light Emitting Diode (OLED) has been studied extensively and has been explained by different mechanisms, such as formation of chemical defects or electrical traps and by thermally induced inter-diffusion of dopants. However, there is an overlooked type of degradation, where the light output decreases rapidly with time. This catastrophic failure can often be attributed to a hard electrical short due to local defects. Here, we show that this "sudden death" can also occur in the absence of a hard electrical short. We investigate this phenomenon by current-voltage characteristics and small-signal impedance measurements on typical OLEDs with a LiF cathode interlayer. We show that in a short period of time the built-in voltage of the diode vanishes; the J-V characteristics become symmetric. The origin is a dramatic increase in the work-function of the LiF interlayer. The interlayer changes from an electron-injecting contact to a quasi-Ohmic hole-injecting contact. The pristine bipolar diode does not become electrically shorted, but suddenly transforms into a unipolar hole-only diode. Upon applying a high voltage the original diode is restored, manifesting the dynamic switching of the LiF contact. (C) 2015 Elsevier B.V. All rights reserved.
- Switching dynamics in non-volatile polymer memoriesPublication . Verbakel, F.; Meskers, S. C. J.; Janssen, R. A. J.; Gomes, Henrique L.; van den Biggelaar, A. J. M.; De Leeuw, Dago M.The time dependence of resistive switching in metal-metal oxide-organic semiconductormetal diodes is investigated. The switching dynamics is controlled by two intrinsic time dependences. A single switching event occurs in a time scale of 400 nanoseconds, but the maximum repetitive switching between ON- and OFF-states is limited by a ‘‘dead time” of a few milliseconds. The dead time is the waiting time after programming in which a next switch is inhibited. Therefore, fast repetitive pulsing prevents the observation of non-volatile switching and limits the maximum clock rate at which these memories can be used. Understanding the origin of this dead time is crucial to future memory applications. Furthermore,the occurrence of a dead time is possibly the origin of the huge variation in the reported switching times.
- Switching in polymeric resistance random-access memories (RRAMS)Publication . Gomes, Henrique L.; Benvenho, A. R. V.; De Leeuw, Dago M.; Cölle, M.; Stallinga, Peter; Verbakel, F.; Taylor, D. M.Resistive switching in aluminum-polymer-based diodes has been investigated using small signal impedance measurements. It is shown that switching is a two-step process. In the first step, the device remains highly resistive but the low frequency capacitance increases by orders of magnitude. In the second step, resistive switching takes place. A tentative model is presented that can account for the observed behavior. The impedance analysis shows that the device does not behave homogenously over the entire electrode area and only a fraction of the device area gives rise to switching.
- The role of internal structure in the anomalous switching dynamics of metal-oxide/polymer resistive random access memoriesPublication . Rocha, Paulo R. F.; Kiazadeh, Asal; De Leeuw, Dago M.; Meskers, S. C. J.; Verbakel, F.; Taylor, D. M.; Gomes, Henrique L.The dynamic response of a non-volatile, bistable resistive memory fabricated in the form of Al2O3/polymer diodes has been probed in both the off- and on-state using triangular and step voltage profiles. The results provide insight into the wide spread in switching times reported in the literature and explain an apparently anomalous behaviour of the on-state, namely the disappearance of the negative differential resistance region at high voltage scan rates which is commonly attributed to a “dead time” phenomenon. The off-state response follows closely the predictions based on a classical, two-layer capacitor description of the device. As voltage scan rates increase, the model predicts that the fraction of the applied voltage, Vox , appearing across the oxide decreases. Device responses to step voltages in both the off- and on-state show that switching events are characterized by a delay time. Coupling such delays to the lower values of Vox attained during fast scan rates, the anomalous observation in the on-state that, device currents decrease with increasing voltage scan rate, is readily explained. Assuming that a critical current is required to turn off a conducting channel in the oxide, a tentative model is suggested to explain the shift in the onset of negative differential resistance to lower voltages as the voltage scan rate increases. The findings also suggest that the fundamental limitations on the speed of operation of a bilayer resistive memory are the time- and voltage-dependences of the switch-on mechanism and not the switch-off process.