Repository logo
 
Loading...
Profile Picture
Person

Gouveia, Licínia

Search Results

Now showing 1 - 8 of 8
  • Permanent genetic resources added to molecular ecology resources database 1 May 2009-31 July 2009
    Publication . Almany, G. R.; De Arruda, M. P.; Arthofer, W.; Atallah, Z. K.; Beissinger, S. R.; Berumen, M. L.; Bogdanowicz, S. M.; Brown, S. D.; Bruford, M. W.; Burdine, C.; Busch, J. W.; Campbell, N. R.; Carey, D.; Carstens, B. C.; Chu, K. H.; Cubeta, M. A.; Cuda, J. P.; Cui, Z.; Datnoff, L. E.; D'Ávila, J. A.; Davis, E. S.; Davis, R. M.; Diekmann, O. E.; Eizirik, E.; Fargallo, J. A.; Fernandes, F.; Fukuda, H.; Gale, L. R.; Gallagher, E.; Gao, Y.; Girard, P.; Godhe, A.; Gonçalves, E. C.; Gouveia, Licínia; Grajczyk, A. M.; Grose, M. J.; Gu, Z.; Halldén, C.; Härnström, K.; Hemmingsen, A. H.; Serrão, Ester
    This article documents the addition of 512 microsatellite marker loci and nine pairs of Single Nucleotide Polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Alcippe morrisonia morrisonia, Bashania fangiana, Bashania fargesii, Chaetodon vagabundus, Colletes floralis, Coluber constrictor flaviventris, Coptotermes gestroi, Crotophaga major, Cyprinella lutrensis, Danaus plexippus, Fagus grandifolia, Falco tinnunculus, Fletcherimyia fletcheri, Hydrilla verticillata, Laterallus jamaicensis coturniculus, Leavenworthia alabamica, Marmosops incanus, Miichthys miiuy, Nasua nasua, Noturus exilis, Odontesthes bonariensis, Quadrula fragosa, Pinctada maxima, Pseudaletia separata, Pseudoperonospora cubensis, Podocarpus elatus, Portunus trituberculatus, Rhagoletis cerasi, Rhinella schneideri, Sarracenia alata, Skeletonema marinoi, Sminthurus viridis, Syngnathus abaster, Uroteuthis (Photololigo) chinensis, Verticillium dahliae, Wasmannia auropunctata, and Zygochlamys patagonica. These loci were cross-tested on the following species: Chaetodon baronessa, Falco columbarius, Falco eleonorae, Falco naumanni, Falco peregrinus, Falco subbuteo, Didelphis aurita, Gracilinanus microtarsus, Marmosops paulensis, Monodelphis Americana, Odontesthes hatcheri, Podocarpus grayi, Podocarpus lawrencei, Podocarpus smithii, Portunus pelagicus, Syngnathus acus, Syngnathus typhle,Uroteuthis (Photololigo) edulis, Uroteuthis (Photololigo) duvauceli and Verticillium albo-atrum. This article also documents the addition of nine sequencing primer pairs and sixteen allele specific primers or probes for Oncorhynchus mykiss and Oncorhynchus tshawytscha; these primers and assays were cross-tested in both species.
  • Genetic structure of amphi-Atlantic Laminaria digitata (Laminariales, Phaeophyceae) reveals a unique range-edge gene pool and suggests post-glacial colonization of the NW Atlantic
    Publication . Neiva, J.; Serrao, Ester; Paulino, Cristina; Gouveia, Licínia; Want, Andrew; Tamigneaux, Éric; Ballenghien, Marion; Mauger, Stéphane; Fouqueau, Louise; Engel-Gautier, Carolyn; Destombe, Christophe; Valero, Myriam
    In the North-east (NE) Atlantic, most intertidal fucoids and warm-temperate kelps show unique low-latitude gene pools matching long-term climatic refugia. For cold-temperate kelps data are scarcer despite their unique cultural, ecological and economic significance. Here we test whether the amphi-Atlantic range of Laminaria digitata is derived from past glacial survival (and vicariance) in both NE and North-west (NW) Atlantic refugia (as suggested by niche modelling), or post-glacial (re)colonization (as suggested by low mtDNA divergence). We screened 14 populations from across the species range for 12 microsatellite loci to identify and map major gene pools and refugia. We assessed if NW Atlantic survival was supported by unique endemic variation, and if genetic diversity and structure were, as predicted from larger hindcasted glacial ranges, higher in the NE Atlantic. Microsatellite data subdivided L. digitata into three main genetic groups matching Brittany, northern Europe and the NW Atlantic, with finer-scale sub-structuring within European clusters. The relatively diverse NE Atlantic lineages probably survived the Last Glacial Maximum along unglaciated periglacial shorelines of the Armorican and Celtic Seas (Brittany cluster) and Ireland (northern European cluster), and remain well differentiated despite their relative proximity. The unique Brittany gene pool, at the contemporary European rear edge, is projected to disappear in the near future under high greenhouse gas emission scenarios. Low allelic diversity and low endemism in the NW Atlantic are consistent with recent post-glacial colonization from Europe, challenging the long-standing hypothesis of in situ glacial survival. Confusion with Hedophyllum nigripes may have led to underestimation of regional diversity of L. digitata, but also to overestimation of its presence along putative trans-Atlantic migration routes. Partial incongruence between modelling and genetic-based biogeographic inferences highlights the benefits of comparing both approaches to understand how shifting climatic conditions affect marine species distributions and explain large-scale patterns of spatial genetic structure.
  • Ocean currents shape the genetic structure of a kelp in southwestern Africa
    Publication . Assis, Jorge; Neiva, J.; Bolton, John J.; Rothman, Mark D.; Gouveia, Licínia; Paulino, Cristina; Mohdnasir, Hasliza; Anderson, Robert J.; Reddy, Maggie M.; Kandjengo, Lineekela; Kreiner, Anja; Pearson, Gareth; Serrao, Ester
    Aim Drivers of extant population genetic structure include past climate-driven range shifts and vicariant events, as well as gene flow mediated by dispersal and habitat continuity. Their integration as alternative or complementary drivers is often missing or incomplete, potentially overlooking relevant processes and time scales. Here we ask whether it is the imprint of past range shifts or habitat connectivity driven by oceanographic transport that best explain genetic structure in a poorly understood model, a forest-forming African kelp. Location Southwestern coast of Africa (Benguela current region). Taxon Laminaria pallida. Methods We estimated genetic variability along the species distributional range using 14 microsatellite markers. This genetic variability was compared to estimates of past range shifts derived from species distribution modelling for the Last Glacial Maximum (LGM), the mid-Holocene (MH) and the present, and estimates of habitat connectivity derived from oceanographic biophysical modelling. Results The species is structured in two clusters, a southern cluster with much richer (allelic richness A: 10.40 +/- 0.33) and unique (private alleles PA: 56.69 +/- 4.05) genetic diversity, and a northern cluster (A: 4.75 +/- 0.17; PA: 6.70 +/- 1.45). These clusters matched well-known biogeographical regions and their transition coincided with a dispersal barrier formed by upwelled offshore transport. No major range shifts or vicariant events were hindcasted along the present range, suggesting population stability from the LGM to the present. Main conclusions Habitat connectivity, rather than past range shifts, explains the extant population structure. Future environmental requirements of the species along the Benguela upwelling system are projected to persist or even intensify, likely preserving the observed genetic patterns for the years to come. Yet, the differentiation and endemicity between clusters, and the isolation structured by the regional oceanography, implies high conservation value for genetic biodiversity, and even more if considering the ecological, social and economic services provided by kelp forests.
  • Glacial vicariance drives phylogeographic diversification in the amphi-boreal kelp Saccharina latissima
    Publication . MACHADO, JOÃO NEIVA; Paulino, Cristina; Nielsen, Mette M.; Krause-Jensen, Dorte; Saunders, Gary W.; Assis, Jorge; Barbara, Ignacio; Tamigneaux, Eric; Gouveia, Licínia; Aires, Tânia; Marba, Nuria; Bruhn, Annette; Pearson, Gareth; Serrao, Ester A.
    Glacial vicariance is regarded as one of the most prevalent drivers of phylogeographic structure and speciation among high-latitude organisms, but direct links between ice advances and range fragmentation have been more difficult to establish in marine than in terrestrial systems. Here we investigate the evolution of largely disjunct (and potentially reproductively isolated) phylogeographic lineages within the amphi-boreal kelp Saccharina latissima s.l. Using molecular data (COI, microsatellites) we confirm that S. latissima comprises also the NE Pacific S. cichorioides complex and is composed of divergent lineages with limited range overlap and genetic admixture. Only a few genetic hybrids were detected throughout a Canadian Arctic/NW Greenland contact zone. The degree of genetic differentiation and sympatric isolation of phylogroups suggest that S. latissima s.l. represents a complex of incipient species. Phylogroup distributions compared with paleo-environmental reconstructions of the cryosphere further suggest that diversification within S. latissima results from chronic glacial isolation in disjunct persistence areas intercalated with ephemeral interglacial poleward expansions and admixture at high-latitude (Arctic) contact zones. This study thus supports a role for glaciations not just in redistributing pre-existing marine lineages but also as a speciation pump across multi-glacial cycles for marine organisms otherwise exhibiting cosmopolite amphi-boreal distributions.
  • Hybrid vigour for thermal tolerance in hybrids between the allopatric kelps Laminaria digitata and L. pallida (Laminariales, Phaeophyceae) with contrasting thermal affinities
    Publication . Martins, Neusa; Pearson, Gareth; Gouveia, Licínia; Tavares, Ana I; Serrao, Ester; Bartsch, Inka
    Kelps are globally important bioengineering species with high ecological and economic value, but are increasingly threatened by climate-driven geographic range shifts. The inheritance of economically important traits from parents to offspring is poorly understood in kelps but it is of utmost interest to seaweed farmers wishing to select strains with superior performance and resilience to environmental change. For two allopatric kelp species (N-Atlantic Laminaria digitata and S-Atlantic L. pallida), we compared the speed of gametogenesis and reproductive success in parental gametophytes, and produced intraspecific and reciprocal interspecific crosses of female x male gametophyte parents isolated from the two species. We then compared the upper thermal resilience of microscopic and macroscopic sibling sporophytes in an exposure experiment over two weeks. The upper thermal limit of the sporophytes resulting from intraspecific crosses of the two species deviated by 1 degrees C. In contrast, sporophytes from both interspecific hybrid crosses had a 2-3 degrees C higher upper thermal tolerance than single species sporophytes, indicating heterosis for thermal tolerance. This phenotypic response appears partially sex-dependent in our study, with female parents being more important in determining the thermal-response phenotype than male parents. The presence of male gametophytes generally enhanced female reproductive success. Both gametogenesis rate and reproductive success differed among the types of reciprocal crosses. Although the interspecific crosses were artificial in an ecological sense, they may provide a tool for understanding the molecular basis of heterosis and thermal tolerance in kelps (e.g. by investigating species-specific gene expression), or for aquaculture breeding programmes against a background of rapid environmental change.
  • Individual-based genetic analyses support asexual hydrochory dispersal in Zostera noltei
    Publication . Berković, Buga; Coelho, Nelson; Gouveia, Licínia; Serrao, Ester; Alberto, Filipe
    Dispersal beyond the local patch in clonal plants was typically thought to result from sexual reproduction via seed dispersal. However, evidence for the separation, transport by water, and re-establishment of asexual propagules (asexual hydrochory) is mounting suggesting other important means of dispersal in aquatic plants. Using an unprecedented sampling size and microsatellite genetic identification, we describe the distribution of seagrass clones along tens of km within a coastal lagoon in Southern Portugal. Our spatially explicit individual-based sampling design covered 84 km(2) and collected 3 185 Zostera noltei ramets from 803 sites. We estimated clone age, assuming rhizome elongation as the only mechanism of clone spread, and contrasted it with paleo-oceanographic sea level change. We also studied the association between a source of disturbance and the location of large clones. A total of 16 clones were sampled more than 10 times and the most abundant one was sampled 59 times. The largest distance between two samples from the same clone was 26.4 km and a total of 58 and 10 clones were sampled across more than 2 and 10 km, respectively. The number of extremely large clone sizes, and their old ages when assuming the rhizome elongation as the single causal mechanism, suggests other processes are behind the span of these clones. We discuss how the dispersal of vegetative fragments in a stepping-stone manner might have produced this pattern. We found higher probabilities to sample large clones away from the lagoon inlet, considered a source of disturbance. This study corroborates previous experiments on the success of transport and re-establishment of asexual fragments and supports the hypothesis that asexual hydrochory is responsible for the extent of these clones.
  • Within-population spatial genetic structure, neighbourhood size and clonal subrange in the seagrass Cymodocea nodosa
    Publication . Alberto, F.; Gouveia, Licínia; ARNAUD-HAOND, Sophie; Pérez-Lloréns, J. L.; Duarte, C. M.; Serrão, Ester
    The extent of clonality within populations strongly influences their spatial genetic structure (SGS), yet this is hardly ever thoroughly analysed. We employed spatial autocorrelation analysis to study effects of sexual and clonal reproduction on dispersal of the dioecious seagrass Cymodocea nodosa. Analyses were performed both at genet level (i.e. excluding clonal repeats) and at ramet level. Clonal structure was characterized by the clonal subrange, a spatial measure of the linear limits where clonality still affects SGS. We show that the clonal subrange is equivalent to the distance where the probability of clonal identity approaches zero. This combined approach was applied to two meadows with different levels of disturbance, Cadiz (stable) and Alfacs (disturbed). Genotypic richness, the proportion of the sample representing distinct genotypes, was moderate (0.38 Cadiz, 0.46 Alfacs) mostly due to dominance of a few clones. Expected heterozygosities were comparable to those found in other clonal plants. SGS analyses at the genet level revealed extremely restricted gene dispersal in Cadiz (Sp = 0.052, a statistic reflecting the decrease of pairwise kinship with distance), the strongest SGS found for seagrass species, comparable only to values for selfing herbaceous land plants. At Cadiz the clonal subrange extended across shorter distances (20–25 m) than in Alfacs (30–35 m). Comparisons of sexual and vegetative components of gene dispersal suggest that, as a dispersal vector within meadows, clonal spread is at least as important as sexual reproduction. The restricted dispersal and SGS pattern in both meadows indicates that the species follows a repeated seedling recruitment strategy.
  • The possible origin of Zostera noltii in the Canary Islands and guidelines for restoration
    Publication . Diekmann, O. E.; Gouveia, Licínia; Perez, J. A.; Gil-Rodriguez, C.; Serrão, Ester
    Seagrasses and their habitat are declining worldwide. Zostera noltii in the Canary Islands has been drastically reduced, mainly by anthropogenic disturbance, to three small surviving patches in a single harbor in Lanzarote. A previous genetic study, using neutral microsatellite markers, revealed that these patches consist of a single clonal individual. Here, an assignment test, using microsatellite data, was used to locate the most likely population of origin from a set of possible donor populations. Our results show that the Moulay Bousselham population in northern Morocco is assigned as the most likely population of origin (88%), although the probability of being at one generation time distance is low (2.7%). This result, however, allows locating the most closely related stands that may be the most successful donor populations for future restoration based on shoot or seed transplantation.