Repository logo
 

Search Results

Now showing 1 - 10 of 12
  • The climate of the Common Era off the Iberian Peninsula
    Publication . Abrantes, Fatima; Rodrigues, Teresa; Rufino, Marta; Salgueiro, Emilia; Oliveira, Dulce; Gomes, Sandra; Oliveira, Paulo; Costa, Ana; Mil-Homens, Mario; Drago, Teresa; Naughton, Filipa
    The Mediterranean region is a climate hot spot, sensitive not only to global warming but also to water availability. In this work we document major temperature and precipitation changes in the Iberian Peninsula and margin during the last 2000 years and propose an interplay of the North Atlantic internal variability with the three atmospheric circulation modes (ACMs), (North Atlantic Oscillation (NAO), east atlantic (EA) and Scandinavia (SCAND)) to explain the detected climate variability. We present reconstructions of sea surface temperature (SST derived from alkenones) and on-land precipitation (estimated from higher plant n-alkanes and pollen data) in sedimentary sequences recovered along the Iberian Margin between the south of Portugal (Algarve) and the northwest of Spain (Galiza) (36 to 42 degrees N). A clear long-term cooling trend, from 0 CE to the beginning of the 20th century, emerges in all SST records and is considered to be a reflection of the decrease in the Northern Hemisphere summer insolation that began after the Holocene optimum. Multi-decadal/centennial SST variability follows other records from Spain, Europe and the Northern Hemisphere. Warm SSTs throughout the first 1300 years encompass the Roman period (RP), the Dark Ages (DA) and the Medieval Climate Anomaly (MCA). A cooling initiated at 1300 CE leads to 4 centuries of colder SSTs contemporary with the Little Ice Age (LIA), while a climate warming at 1800 CE marks the beginning of the modern/Industrial Era. Novel results include two distinct phases in the MCA: an early period (900-1100 years) characterized by intense precipitation/flooding and warm winters but a cooler spring-fall season attributed to the interplay of internal oceanic variability with a positive phase in the three modes of atmospheric circulation (NAO, EA and SCAND). The late MCA is marked by cooler and relatively drier winters and a warmer spring-fall season consistent with a shift to a negative mode of the SCAND. The Industrial Era reveals a clear difference between the NW Iberia and the Algarve records. While off NW Iberia variability is low, the Algarve shows large-amplitude decadal variability with an inverse relationship between SST and river input. Such conditions suggest a shift in the EA mode, from negative between 1900 and 1970 CE to positive after 1970, while NAO and SCAND remain in a positive phase. The particularly noticeable rise in SST at the Algarve site by the mid-20th century (+/- 1970), provides evidence for a regional response to the ongoing climate warming. The reported findings have implications for decadal-scale predictions of future climate change in the Iberian Peninsula.
  • Diatoms as a paleoproductivity proxy in the NW Iberian coastal upwelling system (NE Atlantic)
    Publication . Zuniga, Diana; Santos, Célia; Frojan, Maria; Salgueiro, Emilia; Rufino, Marta; De la Granda, Francisco; Figueiras, Francisco G.; Castro, Carmen G.; Abrantes, Fatima
    The objective of the current work is to improve our understanding of how water column diatom's abundance and assemblage composition is seasonally transferred from the photic zone to seafloor sediments. To address this, we used a dataset derived from water column, sediment trap and surface sediment samples recovered in the NW Iberian coastal upwelling system. Diatom fluxes (2.2 (+/- 5.6) 10(6) valves m(-2) d(-1)) represented the majority of the siliceous microorganisms sinking out from the photic zone during all studied years and showed seasonal variability. Contrasting results between water column and sediment trap diatom abundances were found during downwelling periods, as shown by the unexpectedly high diatom export signals when diatom- derived primary production achieved their minimum levels. They were principally related to surface sediment remobilization and intense Minho and Douro river discharge that constitute an additional source of particulate matter to the inner continental shelf. In fact, contributions of allochthonous particles to the sinking material were confirmed by the significant increase of both benthic and freshwater diatoms in the sediment trap assemblage. In contrast, we found that most of the living diatom species blooming during highly productive upwelling periods were dissolved during sinking, and only those resistant to dissolution and the Chaetoceros and Leptocylindrus spp. resting spores were susceptible to being exported and buried. Fur-thermore, Chaetoceros spp. dominate during spring-early summer, when persistent northerly winds lead to the upwelling of nutrient-rich waters on the shelf, while Leptocylindrus spp. appear associated with late-summer upwelling relaxation, characterized by water column stratification and nutrient depletion. These findings evidence that the contributions of these diatom genera to the sediment's total marine diatom assemblage should allow for the reconstruction of different past upwelling regimes.
  • The complexity of millennial-scale variability in southwestern Europe during MIS 11
    Publication . Oliveira, Dulce; Desprat, Stephanie; Rodrigues, Teresa; Naughton, Filipa; Hodell, David; Trigo, Ricardo; Rufino, Marta; Lopes, Cristina; Abrantes, Fatima; Sanchez Goni, Maria Fernanda
    Climatic variability of Marine Isotope Stage (MIS) 11 is examined using a new high-resolution direct land sea comparison from the SW Iberian margin Site U1385. This study, based on pollen and biomarker analyses, documents regional vegetation, terrestrial climate and sea surface temperature (SST) variability. Suborbital climate variability is revealed by a series of forest decline events suggesting repeated cooling and drying episodes in SW Iberia throughout MIS 11. Only the most severe events on land are coeval with SST decreases, under larger ice volume conditions. Our study shows that the diverse expression (magnitude, character and duration) of the millennial-scale cooling events in SW Europe relies on atmospheric and oceanic processes whose predominant role likely depends on baseline climate states. Repeated atmospheric shifts recalling the positive North Atlantic Oscillation mode, inducing dryness in SW Iberia without systematical SST changes, would prevail during low ice volume conditions. In contrast, disruption of the Atlantic meridional overturning circulation (AMOC), related to iceberg discharges, colder SST and increased hydrological regime, would be responsible for the coldest and driest episodes of prolonged duration in SW Europe. (C) 2016 University of Washington. Published by Elsevier Inc. All rights reserved.
  • Assessing the morphological variability of unio delphinus spengler, 1783 (Bivalvia: Unionidae) using geometric morphometry
    Publication . Morais, Pedro; Rufino, Marta M.; Reis, Joaquim; Dias, Ester; Sousa, Ronaldo
    The morphological variability of freshwater bivalve species, observed between and within river basins, may hamper their correct identification, even by experienced researchers. Classic morphometric measurements, i.e. shell length, height and thickness, or their ratios, are generally insufficient to distinguish populations and/or species. These issues may be overcome using a geometric morphometric method, which allows analysis of the overall shape of the individual, independently of its size. Thus, we aimed to test the usefulness of two geometric morphometric tools, landmarks and sliding semilandmarks, to evaluate the morphological variability of Unio delphinus Spengler, 1783 in three habitats of the Guadiana Basin (SW Iberian Peninsula, Europe): estuary, river and stream. We used 13 landmarks located on the shell interior (at the teeth, muscle scars and pallial line) and 35 sliding semilandmarks for the shell contour. These morphometric analyses showed that the shell shape of U. delphinus differs significantly among different habitats. Estuarine and stream shells are the most disparate (James index = 649.114, permutation P-value <0.001) and variability is not related to variations in shell size. The main differences in shell morphology are the following: (1) estuarine shells are more elongate, while riverine shells are more subovate; (2) the anterior curvature at the umbo is steeper in estuarine and riverine shells; (3) estuarine shells have an arched curvature at the ventral part of the shell, which is absent in specimens from the other habitats. Our data suggest that the morphology of U. delphinus shells might be influenced by the water flow characteristics of each habitat, since shells exhibited characteristics that are typically observed in freshwater mussels from lotic and lentic habitats.
  • Influence of data pre-processing on the behavior of spatial indicators
    Publication . Rufino, MM; Bez, Nicolas; Brind'Amour, Anik
    Spatial indicators are widely used to quantify the impact of climate and anthropogenic changes on species spatial distribution. These metrics are thus, determinant to decisions on the conservation measures to be implemented. In the current work, the effect of two common pre-processing methods: gridding and continuous interpolation, on the values given by five spatial indicators: index of aggregation, percentage of presence, center of gravity, inertia and isotropy was studied. Indicators were computed using empirical data of 32 species biomass distributions, obtained from time series of bottom trawl and of acoustic surveys, with different sampling designs. Spatial indicators computed using pre-processed data were compared with spatial indicators estimated without pre-processing the data using the difference between the two approaches. The pre-processing of the data consisted of a series of progressive increase of grid sizes, from 20 to 120 km, and a series of ten different interpolation methods: linear models, inverse distance weighting, bicubic spline, Generalised Additive Models, ordinary, universal kriging and geostatistical conditional simulations. Pre-processing the data, both by gridding or interpolation caused a change of several orders of magnitude on the indicator results, for the two surveys considered. Inertia showed opposite differences for trawl and acoustic datasets whereas the remaining indicators evidenced similar patterns of difference. An index of relative difference, was computed to verify whether the pre-processing effect on the indicator was higher or lower than the observed temporal variability. This index showed that for certain species, the variability of the indicators was over two-fold its respective inter-annual temporal variability, as it was the case of the percentage of presence and the index of aggregation, estimated using interpolated or gridded data. The most important factors explaining most of the difference between results with or without pre-processing the data were the indicator considered. For example, the percentage of presence was much more sensitive to pre-processing than inertia or isotropy. Additionally, the interpolation method ( bi-cubic splines) and gridding size up to a certain level (< 80 km grids) also influenced the results observed. We advise that if pre-processing the data prior to the computation of indicators is required, then detailed choices and hypotheses underlying the approach must be clearly stated, particularly if the indicators are to be compared among studies, countries or case studies.
  • Habitat suitability modelling of four terrestrial slug species in the Iberian Peninsula (Arionidae: Geomalacus species)
    Publication . Patrao, Claudia; Assis, J.; Rufino, MM; Silva, Goncalo; Jordaens, Kurt; Backeljau, Thierry; Castilho, Rita
    Ecological niche modelling (ENM) determines habitat suitability of species by relating records of occurrence to environmental variables. Here, we investigated habitat suitability of four terrestrial slugs of the genus Geomalacus from the Iberian Peninsula using ENM. The potential distribution of these species was estimated using maximum entropy modelling. For this we used published presence records, together with observations from our fieldwork, and 10 layers of environmental variables in a crossvalidation design using ` minimum predicted area' as a measure of success. For each species, the models predicted distributions with high accuracy, while restricting predictions to minimum areas. Precipitation, and to a lesser extent temperature, were the most important variables to predict the distributions of the four species. We then compared the predicted distributions with the currently known distributions. For G. anguiformis and G. maculosus the predicted distributions included the known distributions, but also nearby mountain areas where these species have not previously been found. For G. malagensis and G. oliveirae the models predicted much wider distributions. Subsequent dedicated fieldwork could not confirm the presence of G. oliveirae in the newly predicted areas. Conversely, G. malagensis was found at five new and distant localities, including areas in Portugal where the species has not previously been recorded.
  • A 1-Ma record of sea surface temperature and extreme cooling events in the North Atlantic: A perspective from the Iberian Margin
    Publication . Rodrigues, Teresa; Alonso-Garcia, Montserrat; Hodell, D. A.; Rufino, MM; Naughton, F.; Grimalt, J. O.; H L Voelker, Antje; Abrantes, Fatima
    The Iberian Margin is a sensitive area to track high and low latitude processes, and is a key location to understand major past climatic and oceanographic changes. Here we present new biomarker data from IODP Site U1385 ("Shackleton site") (1017-336 ka) that, when combined with existing data from Cores MD01-2443/4 (last 335 ka), allows us to assess the evolution of sea surface temperature (SST) and meltwater influx over the last 1 Ma at the Iberian Margin. Interglacial periods throughout the last 1 Ma show SST close to 20 degrees C, even during the so-called "luke-warm" interglacials that are marked by relatively low atmospheric CO2 concentrations. During glacial periods, extremely cold stadial events are recognized at the Iberian Margin, and are very likely related to meltwater discharges from the European and British-Irish ice sheets into the NE Atlantic, which were transported southwards by the Portugal Current. We subdivided the record into four intervals on the basis of the timing and the magnitude of these extremely cold stadials: 1) from 1017 to similar to 900 ka, only minor sporadic freshwater input occurred during deglaciations; 2) from 900 to 675 ka extreme cold events occur as terminal stadial events at the beginning of the deglaciations, which results in abrupt deglacial SST shifts; 3) from 675 to 450 ka only a few, very short-lived events are recorded and seldom is there freshwater input at the Iberian Margin; 4) during the last 450 ka the extreme cold events occurred under full glacial conditions, with particularly severe events during MIS 6 and 8. We propose these mid -glacial events are associated with a strong discharges of European ice sheet (EIS). The fact that these extreme cold events do not coincide with deglaciations questions the role of European ice sheet discharges in triggering deglaciations. (C) 2017 Elsevier Ltd. All rights reserved.
  • Diatoms Si uptake capacity drives carbon export in coastal upwelling systems
    Publication . Abrantes, Fatima; Cermeno, Pedro; Lopes, C.; Romero, Oscar; Matos, Lelia; Van Iperen, Jolanda; Rufino, Marta; Magalhaes, Vitor
    Coastal upwelling systems account for approximately half of global ocean primary production and contribute disproportionately to biologically driven carbon sequestration. Diatoms, silica-precipitating microalgae, constitute the dominant phytoplankton in these productive regions, and their abundance and assemblage composition in the sedimentary record is considered one of the best proxies for primary production. The study of the sedimentary diatom abundance (SDA) and total organic carbon content (TOC) in the five most important coastal upwelling systems of the modern ocean (Iberia-Canary, Benguela, Peru-Humboldt, California, and Somalia-Oman) reveals a global-scale positive relationship between diatom production and organic carbon burial. The analysis of SDA in conjunction with environmental variables of coastal upwelling systems such as upwelling strength, satellite-derived net primary production, and surface water nutrient concentrations shows different relations between SDA and primary production on the regional scale. On the global scale, SDA appears modulated by the capacity of diatoms to take up silicic acid, which ultimately sets an upper limit to global export production in these ocean regions.
  • Integrating spatial indicators in the surveillance of exploited marine ecosystems
    Publication . Rufino, Marta; Bez, Nicolas; Brind’Amour, Anik
    Spatial indicators are used to quantify the state of species and ecosystem status, that is the impacts of climate and anthropogenic changes, as well as to comprehend species ecology. These metrics are thus, determinant to the stakeholder's decisions on the conservation measures to be implemented. A detailed review of the literature (55 papers) showed that 18 spatial indicators were commonly used in marine ecology. Those indicators were than characterized and studied in detail, based on its application to empirical data (a time series of 35 marine species spatial distributions, sampled either with a random stratified survey or a regular transects surveys). The results suggest that the indicators can be grouped into three classes, that summarize the way the individuals occupy space: occupancy (the area occupied by a species), aggregation (spreading or concentration of species biomass) and quantity dependent (indicators correlated with biomass), whether these are spatially explicit (include the geographic coordinates, e.g. center of gravity) or not. Indicator's temporal variability was lower than between species variability and no clear effect was observed in relation to sampling design. Species were then classified accordingly to their indicators. One indicator was selected from each of the three categories of indicators, to represent the main axes of species spatial behavior and to interpret them in terms of occupancy-aggregation-quantity relationships. All species considered were then classified according to their relationships among those three axes, into species that under increasing abundancy, primarily increase occupancy or aggregation or both. We suggest to use these relationships along the three-axes as surveillance diagrams to follow the yearly evolution of species distributional patterns in the future.
  • Seasonality in coastal macrobenthic biomass and its implications for estimating secondary production using empirical models
    Publication . Saulnier, Erwan; Brind'Amour, Anik; Tableau, Adrien; Rufino, Marta M.; Dauvin, Jean‐Claude; Luczak, Christophe; Le Bris, Hervé
    Macrobenthic secondary production is widely used to assess the trophic capacity, health, and functioning of marine and freshwater ecosystems. Annual production estimates are often calculated using empirical models and based on data collected during a single period of the year. Yet, many ecosystems show seasonal variations. Although ignoring seasonality may lead to biased and inaccurate estimates of annual secondary production, it has never been tested at the community level. Using time series of macrobenthic data collected seasonally at three temperate marine coastal soft-bottom sites, we assessed seasonal variations in biomass of macrobenthic invertebrates at both population and community levels. We then investigated how these seasonal variations affect the accuracy of annual benthic production when assessed using an empirical model and data from a single sampling event. Significant and consistent seasonal variations in biomass at the three study sites were highlighted. Macrobenthic biomass was significantly lower in late winter and higher in summer/early fall for 18 of the 30 populations analyzed and for all three communities studied. Seasonality led to inaccurate and often biased estimates of annual secondary production at the community level when based on data from a single sampling event. Bias varied by site and sampling period, but reached similar to 50% if biomass was sampled at its annual minimum or maximum. Since monthly sampling is rarely possible, we suggest that ecologists account for uncertainty in annual production estimates caused by seasonality.