Loading...
8 results
Search Results
Now showing 1 - 8 of 8
- Alternative proteins for fish diets: implications beyond growthPublication . Aragão, Cláudia; Gonçalves, Ana Teresa; Costas, Benjamín; Azeredo, Rita; Xavier, Maria João; Engrola, SofiaAquaculture has been challenged to find alternative ingredients to develop innovative feed formulations that foster a sustainable future growth. Given the most recent trends in fish feed formulation on the use of alternative protein sources to decrease the dependency of fishmeal, it is fundamental to evaluate the implications of this new paradigm for fish health and welfare. This work intends to comprehensively review the impacts of alternative and novel dietary protein sources on fish gut microbiota and health, stress and immune responses, disease resistance, and antioxidant capacity. The research results indicate that alternative protein sources, such as terrestrial plant proteins, rendered animal by-products, insect meals, micro- and macroalgae, and single cell proteins (e.g., yeasts), may negatively impact gut microbiota and health, thus affecting immune and stress responses. Nevertheless, some of the novel protein sources, such as insects and algae meals, have functional properties and may exert an immunostimulatory activity. Further research on the effects of novel protein sources, beyond growth, is clearly needed. The information gathered here is of utmost importance, in order to develop innovative diets that guarantee the production of healthy fish with high quality standards and optimised welfare conditions, thus contributing to a sustainable growth of the aquaculture industry.
- Microalgal biomasses have potential as ingredients in microdiets for Senegalese sole (Solea senegalensis) post-larvaePublication . Peixoto, Diogo; Pinto, Wilson; Gonçalves, Ana Teresa; Machado, Marina; Reis, Bruno; Silva, Joana; Navalho, Joao; Dias, Jorge; Conceicao, Luis; Costas, BenjaminSenegalese sole (Solea senegalensis) production presents several nutritional challenges, making this species a good candidate to study the dietary potential of bioactive compounds. Since proper nutrition plays a fundamental role in fish biology, it is necessary to further investigate species-specific and well-balanced diets in order to improve Senegalese sole juvenile farming. Algae have antioxidant properties, high-quality dietary protein, and are a source of bioactive compounds. This study evaluates the effects of dietary microalgal inclusion in both health status and growth performance of Senegalese sole post-larvae. Individuals 41 days after hatching (DAH) were randomly distributed among 12 tanks and four experimental diets were randomly distributed by triplicate groups. A basal diet served as CTRL and the experimental diets were formulated to include 3% of each of the algal biomass (CHLO, Chlorella sp. from heterotrophic production; PHAEO, Phaeodactylum sp.; and NANNO, Nannochloropsis sp.). At 50 DAH, 20 post-larvae/tank were collected and homogenized for analysis of immune and oxidative status, and at 61 DAH the total length, dry weight, and survival were assessed. No changes were observed in survival and total length of individuals, post-larvae fed NANNO, and CHLO dietary treatments increased dry weight at 61 DAH compared with those fed CTRL. While post-larvae immune status was apparently not altered by dietary treatments at 50 DAH, the total glutathione content decreased in fish fed PHAEO and CHLO dietary treatments compared to control diet. The observed results on improvement of growth performance without adverse effects on the immune status and decrease of endogenous total glutathione point to the fact that Nannochloropsis sp., Phaeodactylum sp., and Chlorella sp. could work as potential candidates for inclusion in microdiets for Senegalese sole.
- Physiological response of Atlantic Salmon (Salmo salar) to long-term exposure to an anesthetic obtained from heterosigma akashiwoPublication . Gonçalves, Ana Teresa; Llanos-Rivera, Alejandra; Ruano, Miguel; Avello, Veronica; Gallardo-Rodriguez, Juan José; Astuya-Villalón, AllissonDespite the invaluable role of anesthetics as a tool for ensuring animal welfare in stressful situations, there is currently a lack of anesthetic drugs that meet the requirements of intensive aquaculture. In response to the growing interest in anesthetic substances of natural origin, this study evaluated the physiological and health impact of an anesthetic based on an extract of the microalga Heterosigma akashiwo on juvenile salmon (Salmo salar) exposed for a period of 72 h. To simulate a condition closer to reality where fish are subjected to stimuli (e.g., transport), the animals were exposed to 50 mg L-1 of algal extract and to physical stress. Functional, physiological, and histological parameters were evaluated in blood and tissues at different sampling periods (0, 24, and 72 h). There was no mortality and the induction and recovery times observed were within the established criteria for anesthetic efficacy. The anesthetic extract did not induce any side effects, such as stress or metabolic damage, indicating that this extract is a viable option for supporting fish welfare during deleterious events. This study provides information to support that the anesthetic extract tested, derived from H. akashiwo, is a promising candidate drug for operations requiring sedation (e.g., Salmonid transport).
- Immune status and hepatic antioxidant capacity of Gilthead Seabream Sparus aurata juveniles fed yeast and microalga derived β-glucansPublication . Reis, Bruno; Gonçalves, Ana Teresa; Santos, Paulo; Sardinha, Manuel; Conceição, Luís E. C.; Serradeiro, Renata; Pérez-Sánchez, Jaume; Calduch-Giner, Josep; Schmid-Staiger, Ulrike; Frick, Konstantin; Dias, Jorge; Costas, BenjamínThis work aimed to evaluate the effects of dietary supplementation with β-glucans extracted from yeast (Saccharomyces cerevisiae) and microalga (Phaeodactylum tricornutum) on gene expression, oxidative stress biomarkers and plasma immune parameters in gilthead seabream (Sparus aurata) juveniles. A practical commercial diet was used as the control (CTRL), and three others based on CTRL were further supplemented with different β-glucan extracts. One was derived from S. cerevisiae (diet MG) and two different extracts of 21% and 37% P. tricornutum-derived β-glucans (defined as Phaeo21 and Phaeo37), to give a final 0.06% β-glucan dietary concentration. Quadruplicate groups of 95 gilthead seabream (initial body weight: 4.1 ± 0.1 g) were fed to satiation three times a day for 8 weeks in a pulse-feeding regimen, with experimental diets intercalated with the CTRL dietary treatment every 2 weeks. After 8 weeks of feeding, all groups showed equal growth performance and no changes were found in plasma innate immune status. Nonetheless, fish groups fed β-glucans supplemented diets showed an improved anti-oxidant status compared to those fed CTRL at both sampling points (i.e., 2 and 8 weeks). The intestinal gene expression analysis highlighted the immunomodulatory role of Phaeo37 diet after 8 weeks, inducing an immune tolerance effect in gilthead seabream intestine, and a general down-regulation of immune-related gene expression. In conclusion, the results suggest that the dietary pulse administration of a P. tricornutum 37% enriched-β-glucans extract might be used as a counter-measure in a context of gut inflammation, due to its immune-tolerant and anti-oxidative effects.
- Proximity ligation strategy for the genomic reconstruction of microbial communities associated with the ectoparasite Caligus rogercresseyiPublication . Valenzuela-Miranda, Diego; Gonçalves, Ana Teresa; Valenzuela-Muñoz, Valentina; Nuñez-Acuña, Gustavo; Liachko, Ivan; Nelson, Bradley; Gallardo-Escarate, CristianThe sea louse Caligus rogercresseyi has become one of the main constraints for the sustainable development of salmon aquaculture in Chile. Although this parasite's negative impacts are well recognized by the industry, some novel potential threats remain unnoticed. The recent sequencing of the C. rogercresseyi genome revealed a large bacterial community associated with the sea louse, however, it is unknown if these microorganisms should become a new focus of sanitary concern. Herein, chromosome proximity ligation (Hi-C) coupled with long-read sequencing were used for the genomic reconstruction of the C. rogercresseyi microbiota. Through deconvolution analysis, we were able to assemble and characterize 413 bacterial genome clusters, including six bacterial genomes with more than 80% of completeness. The most represented bacterial genome belonged to the fish pathogen Tenacibacullum ovolyticum (97.87% completeness), followed by Dokdonia sp. (96.71% completeness). This completeness allowed identifying 21 virulence factors (VF) within the T. ovolyticum genome and four antibiotic resistance genes (ARG). Notably, genomic pathway reconstruction analysis suggests putative metabolic complementation mechanisms between C. rogercresseyi and its associated microbiota. Taken together, our data highlight the relevance of Hi-C techniques to discover pathogenic bacteria, VF, and ARGs and also suggest novel host-microbiota mutualism in sea lice biology.
- Algae as food in Europe: an overview of species diversity and their applicationPublication . Mendes, Madalena; Navalho, Sofia; Ferreira, Alice; Paulino, Cristina; Figueiredo, Daniel; Silva, Daniel; Gao, Fengzheng; Gama, Florinda; Bombo, Gabriel; Jacinto, Rita; Aveiro, Susana; Schulze, Peter S.C.; Gonçalves, Ana Teresa; Pereira, Hugo; Gouveia, Luisa; Patarra, Rita F.; Abreu, Maria Helena; Silva, Joana L.; Navalho, João; Varela, João; Galileu Speranza, LaisAlgae have been consumed for millennia in several parts of the world as food, food supplements, and additives, due to their unique organoleptic properties and nutritional and health benefits. Algae are sustainable sources of proteins, minerals, and fiber, with well-balanced essential amino acids, pigments, and fatty acids, among other relevant metabolites for human nutrition. This review covers the historical consumption of algae in Europe, developments in the current European market, challenges when introducing new species to the market, bottlenecks in production technology, consumer acceptance, and legislation. The current algae species that are consumed and commercialized in Europe were investigated, according to their status under the European Union (EU) Novel Food legislation, along with the market perspectives in terms of the current research and development initiatives, while evaluating the interest and potential in the European market. The regular consumption of more than 150 algae species was identified, of which only 20% are approved under the EU Novel Food legislation, which demonstrates that the current legislation is not broad enough and requires an urgent update. Finally, the potential of the European algae market growth was indicated by the analysis of the trends in research, technological advances, and market initiatives to promote algae commercialization and consumption.
- Modulatory effect of Gracilaria gracilis on European seabass gut microbiota community and its functionalityPublication . Gonçalves, Ana Teresa; Simões, Marco; Costa, Cátia; Passos, Ricardo; Baptista, TeresaSeaweeds are an important source of nutrients and bioactive compounds and have a high potential as health boosters in aquaculture. This study evaluated the effect of dietary inclusion of Gracilaria gracilis biomass or its extract on the European seabass (Dicentrarchus labrax) gut microbial community. Juvenile fish were fed a commercial-like diet with 2.5% or 5% seaweed biomass or 0.35% seaweed extract for 47 days. The gut microbiome was assessed by 16S rRNA amplicon sequencing, and its diversity was not altered by the seaweed supplementation. However, a reduction in Proteobacteria abundance was observed. Random forest analysis highlighted the genera Photobacterium, Staphylococcus, Acinetobacter, Micrococcus and Sphingomonas, and their abundances were reduced when fish were fed diets with algae. SparCC correlation network analysis suggested several mutualistic and other antagonistic relationships that could be related to the predicted altered functions. These pathways were mainly related to the metabolism and biosynthesis of protective compounds such as ectoine and were upregulated in fish fed diets supplemented with algae. This study shows the beneficial potential of Gracilaria as a functional ingredient through the modulation of the complex microbial network towards fish health improvement.
- Host defense effectors expressed by hemocytes shape the bacterial microbiota from the Scallop HemolymphPublication . González, Roxana; Gonçalves, Ana Teresa; Rojas, Rodrigo; Brokordt, Katherina; Rosa, Rafael Diego; Schmitt, PaulinaThe interaction between host immune response and the associated microbiota has recently become a fundamental aspect of vertebrate and invertebrate animal health. This interaction allows the specific association of microbial communities, which participate in a variety of processes in the host including protection against pathogens. Marine aquatic invertebrates such as scallops are also colonized by diverse microbial communities. Scallops remain healthy most of the time, and in general, only a few species are fatally affected on adult stage by viral and bacterial pathogens. Still, high mortalities at larval stages are widely reported and they are associated with pathogenic Vibrio. Thus, to give new insights into the interaction between scallop immune response and its associated microbiota, we assessed the involvement of two host antimicrobial effectors in shaping the abundances of bacterial communities present in the scallop Argopecten purpuratus hemolymph. To do this, we first characterized the microbiota composition in the hemolymph from non-stimulated scallops, finding both common and distinct bacterial communities dominated by the Proteobacteria, Spirochaetes and Bacteroidetes phyla. Next, we identified dynamic shifts of certain bacterial communities in the scallop hemolymph along immune response progression, where host antimicrobial effectors were expressed at basal level and early induced after a bacterial challenge. Finally, the transcript silencing of the antimicrobial peptide big defensin ApBD1 and the bactericidal/permeability-increasing protein ApLBP/BPI1 by RNA interference led to an imbalance of target bacterial groups from scallop hemolymph. Specifically, a significant increase in the class Gammaproteobacteria and the proliferation of Vibrio spp. was observed in scallops silenced for each antimicrobial. Overall, our results strongly suggest that scallop antimicrobial peptides and proteins are implicated in the maintenance of microbial homeostasis and are key molecules in orchestrating host-microbiota interactions. This new evidence depicts the delicate balance that exists between the immune response of A. purpuratus and the hemolymph microbiota.