Loading...
14 results
Search Results
Now showing 1 - 10 of 14
- Tidal variability of phytoplankton and their environmental drivers in the freshwater reaches of the Guadiana estuary (SW Iberia)Publication . Domingues, Rita B.; Anselmo, Tânia P.; Barbosa, Ana B.; Sommer, Ulrich; Galvão, Helena M.The effects of different phases of semidiurnal and spring-neap tidal cycles on phytoplankton and environmental drivers were evaluated in a tidal, freshwater location of a mesotidal estuary (Guadiana estuary, SW Iberia). An Eulerian approach was used and sampling covered different seasons during 2008. Samples were collected during spring and neap tides, at high tide, mid-ebb, low tide and mid-flood. Several physical-chemical variables were measured, as well as phytoplankton abundance and biomass. Salinity was higher at high-tide and suspended particulate matter was higher during spring tides and flood, due to higher vertical mixing and resuspension of bottom sediments. Chlorophyll a concentration during winter and summer neap tides was higher than during spring tides, whilst the abundance of pennate diatoms was higher during winter and Spring spring tides than during neap tides, probably reflecting differences in river discharge. Overall, tidally-induced differences detected in the freshwater tidal reaches of the Guadiana estuary were not as considerable as those observed in the lower estuary. However, the occurrence of tidally-induced variability in some seasons reflects that thorough sampling programs to study estuarine tidal dynamics should be conducted throughout the year. Occasional sampling will not reflect the typical variability of these highly dynamic systems.
- Light as a driver of phytoplankton growth and production in the freshwater tidal zone of a turbid estuaryPublication . Domingues, Rita B.; Anselmo, Tânia P.; Barbosa, Ana B.; Sommer, Ulrich; Galvão, Helena M.Light is usually the main driver of phytoplankton growth in turbid estuaries, but it has received far less attention than nutrients as a bottom-up factor. This study presents the first experimental analysis of light limitation of phytoplankton growth and production and its seasonal variability in the freshwater tidal reaches of the turbid Guadiana estuary, SE Portugal/SW Spain. Natural phytoplankton communities were exposed to different photosynthetically active radiation (PAR) intensities. Short-term incubations with addition of 14HCO3 were used to estimate photosynthetic parameters and long-term incubations allowed the evaluation of the effects of light on phytoplankton composition and growth. Light limitation of phytoplankton growth occurred throughout the year in the freshwater tidal reaches of the estuary and no photoinhibition was observed at least up to 615 mmol photonsm 2 s 1. In the summer, co-limitation by nutrients prevented a positive response of phytoplankton to light enrichment. Diatoms were the most light-limited group, whilst cyanobacteria were the only group acclimated to low-light conditions. Green algae and dinoflagellates responded positively to higher PAR exposures. High saturating irradiances, high light-saturated rates of primary production and low photosynthetic efficiencies suggest that phytoplankton community was not acclimated to the low-light conditions that prevail in the Guadiana estuary.
- Nutrient limitation of phytoplankton growth in the freshwater tidal zone of a turbid, Mediterranean estuaryPublication . Domingues, Rita B.; Anselmo, Tânia P.; Barbosa, Ana B.; Sommer, Ulrich; Galvão, Helena M.Identification of the limiting nutrient(s) is a requirement for the rational management of eutrophication. Here, we present the first experimental analysis of nutrient limitation of phytoplankton growth and its seasonal variation in the Guadiana estuary (SE Portugal-SW Spain). Ten microcosm experiments were performed during 2005 and 2008, using water samples collected in the freshwater tidal zone of the Guadiana estuary. Nitrate, phosphate and silicate were added in a single pulse, alone and in combinations. Experimental treatments were incubated for 4 days under controlled laboratory conditions. Phytoplankton response to nutrient enrichment was evaluated through changes in biomass (Chla), and abundance of specific phytoplankton groups. Overall, phytoplankton growth seemed to be nitrogen-limited throughout the productive period, especially green algae in 2005 and diatoms in 2008. In the summer 2008, cyanobacteria and the harmful dinoflagellate Kryptoperidinium foliaceum responded to N enrichment in the absence of Si. Indeed, the presence of K. foliaceum was observed for the first time in the freshwater tidal reaches of the Guadiana estuary, where dinoflagellates were usually absent or rare. The significant increase on dinoflagellates and cyanobacteria growth in response to N enrichment in the absence of Si is alarming, because anthropogenic nutrient enrichments usually increase N and P, but not Si. Furthermore, relatively high N concentrations, up to 22 mM, were found to be limiting to phytoplankton growth. These results should therefore be used as a management tool when establishing nutrient criteria and nutrient loading budgets to estuarine waters.
- Connections between upwelling patterns and phytoplankton variability under different coastal regimes in SW Iberia PeninsulaPublication . Krug, Lilian; Silvano, Kathleen M.; Barbosa, Ana B.; Domingues, Rita B.; Galvão, Helena M.; Luis, Joaquim; Platt, Trevor; Relvas, Paulo; Sathyendranath, ShubhaThe region off southwestern Iberia (NE Atlantic) encompasses a wide variety of oceanographic regimes, including differently (geographic) oriented coastal areas impacted by upwelling, riverine inputs and submarine groundwater discharge, submarine canyons and seamounts, and open ocean waters, thereby potentially promoting zone-specific phytoplankton dynamics. Overall, this heterogeneous region is classified as being very sensitive to climate change, and climate-driven alterations (e.g., sea surface warming, changes in upwelling patterns and intensity) have been recently reported for the area. The present study aims to understand the contribution of upwelling to seasonal and interannual variability of coastal phytoplankton, using a remote sensing-based approach. Phytoplankton variability was evaluated using satellite-derived chlorophyll-a (Chl-a), as a proxy for phytoplankton biomass, and primary productivity (PP). Chl-a were obtained from merged SeaWiFS (Seaviewing Wide Field-of-view Sensor), MeRIS (Medium Resolution Imaging Spectrometer) and MODIS-Aqua (Moderate-resolution Imaging Spectroradiometer) sensors at Globcolour portal. PP data at 9.25 km resolution were derived from Eppley’s Vertically Generalized Production Model, based on SeaWiFS and MODIS-Aqua and available at the Ocean Productivity site. Upwelling intensity was estimated using the difference in sea surface temperature (SST) between off and nearshore zones. Advanced Very-High Resolution Radiometer (AVHRR) 4 km SST were obtained from Pathfinder database. Other phytoplankton environmental drivers, such as local (e.g., river flow) and global (e.g., North Atlantic Oscillation - NAO) climate variables, were also analysed. The study area was divided into subareas differently impacted by upwelling and riverine flow, and satellitederived data was averaged for each zone. Seasonal and interannual variability covering a 14-year time series (1998- 2011) for each variable/region were explored. Chl-a at offshelf locations was significantly lower than coastal areas, and exhibited a fairly stable unimodal annual cycle, with maximum during March. Coastal locations displayed more variable annual patterns, with spring and summer Chl-a maxima, reflecting the impact of upwelling events and freshwater inputs. In respect to interannual variability, NAO index and coastal Chl-a were negative and significantly correlated, with 1-month lag. Chl-a interannual trends were also correlated to local climate variables, namely riverine flow for the easternmost coastal zone. The correlation between upwelling intensity and phytoplankton off SW Iberia is region-dependent being less strong within regions dominated by riverine influence.
- Environmental forcing of phytoplankton in a Mediterranean estuary (Guadiana Estuary, southwestern Iberia): a decadal of anthropogenic and climatic influencesPublication . Barbosa, Ana B.; Domingues, Rita B.; Galvão, Helena M.Phytoplankton seasonal and interannual variability in theGuadiana upper estuarywas analyzed during 1996–2005, a period that encompassed a climatic controlled reduction in river flow that was superimposed on the construction of a dam. Phytoplankton seasonal patterns revealed an alternation between a persistent light limitation and episodic nutrient limitation. Phytoplankton succession, with early spring diatom blooms and summer–early fall cyanobacterial blooms, was apparently driven by changes in nutrients, water temperature, and turbulence, clearly demonstrating the role of river flow and climate variability. Light intensity in the mixed layer was a prevalent driver of phytoplankton interannual variability, and the increased turbidity caused by the Alqueva dam construction was linked to pronounced decreases in chlorophyll a concentration, particularly at the start and end of the phytoplankton growing period. Decreases in annual maximum and average abundances of diatoms, green algae, and cyanobacteria were also detected. Furthermore, chlorophyll a decreases after dam filling and a decrease in turbidity may point to a shift from light limitation towards a more nutrient-limited mode in the near future.
- Repply to: Brito, A.C., Brotas, V., Caetano, M., Coutinho, T.P., Bordalo, A.A., Icely, J., Neto, J.M., Serôdio, J., Moita, T. (2012) "Defining phytoplankton class boundaries in Portuguese transitional waters: an evaluation of the ecological quality status according to the Water Framework Directive" [Ecological Indicators 19, 5-14]Publication . Domingues, Rita B.; Barbosa, Ana B.; Galvão, Helena M.We write to comment on the recently published paper “Defining phytoplankton class boundaries in Portuguese transitional waters: an evaluation of the ecological quality status according to the Water Framework Directive” (Brito et al., 2012). This paper presents an integrated methodology to analyse the ecological quality status of several Portuguese transitional waters, using phytoplanktonrelated metrics. One of the systems analysed, the Guadiana estuary in southern Portugal, is considered the most problematic estuary, with its upstream water bodies classified as Poor in terms of ecological status. We strongly disagree with this conclusion and we would like to raise awareness to some methodological constraints that, in our opinion, are the basis of such deceptive conclusions and should therefore not be neglected when using phytoplankton to assess the ecological status of natural waters.
- Short-term interactive effects of ultraviolet radiation, carbon dioxide and nutrient enrichment on phytoplankton in a shallow coastal lagoonPublication . Domingues, Rita B.; Guerra, Cátia C.; Galvão, Helena M.; Brotas, Vanda; Barbosa, Ana B.The main goal of this study was to evaluate short-term interactions between increased CO2, UVR and inorganic macronutrients (N, P and Si) on summer phytoplankton assemblages in the Ria Formosa coastal lagoon (SW Iberia), subjected to intense anthropogenic pressures and highly vulnerable to climate change. A multifactorial experiment using 20 different nutrient-enriched microcosms exposed to different spectral and CO2 conditions was designed. Before and after a 24-h in situ incubation, phytoplankton abundance and composition were analysed. Impacts and interactive effects of high CO2, UVR and nutrients varied among different functional groups. Increased UVR had negative effects on diatoms and cyanobacteria and positive effects on cryptophytes, whereas increased CO2 inhibited cyanobacteria but increased cryptophyte growth. A positive synergistic interaction between CO2 and UVR was observed for diatoms; high CO2 counteracted the negative effects of UVR under ambient nutrient concentrations. Nutrient enrichments suppressed the negative effects of high CO2 and UVR on cyanobacteria and diatoms, respectively. Beneficial effects of CO2 were observed for diatoms and cryptophytes under combined additions of nitrate and ammonium, suggesting that growth may be limited by DIC availability when the primary limitation by nitrogen is alleviated. Beneficial effects of high CO2 and UVR in diatoms were also induced or intensified by ammonium additions.
- Phytoplankton composition, growth and production in the Guadiana estuary (SW Iberia): unraveling changes induced after dam constructionPublication . Domingues, Rita B.; Barbosa, Ana B.; Sommer, Ulrich; Galvão, Helena M.Water quality and quantity problems in the Guadiana estuary due to a recently built dam have been predicted, including an enhancement of cyanobacteria blooms. The main goal of this work was thus to describe the present phytoplankton dynamics in relation to its environmental drivers and to evaluate the effects of damming on phytoplankton in the Guadiana estuary. Sampling campaigns were conducted during 2007–2009 in 4 locations of the Guadiana estuary, covering the salinity gradient. Phytoplankton-related and physical–chemical variables were analyzed. Throughout our study, light availability was mainly controlled by suspended sediments and it was much lower than saturating intensities described for phytoplankton growth. Therefore, light was probably limiting to phytoplankton growth throughout the year, especially in the middle and upper estuarine zones. Nitrogen limitation of phytoplankton growth occurred occasionally throughout the study period, especially during spring and summer. Overall, light and nutrient availability were mainly controlled by river flow; anthropogenic sources of nutrients to the estuary were negligible. Phytoplankton showed a unimodal cycle with biomass maximum in late spring/early summer, and the typical seasonal succession of freshwater phytoplankton (diatoms, green algae, cyanobacteria) was observed. Diatoms were the main component of the phytoplankton community and their variability closely followed nitrate and river flow variability. The relative abundance of the main phytoplankton groups changed in relation to the period before dam construction, with a decrease on cyanobacteria contribution to total abundance. The environmental perturbation induced by dam construction has now stabilized and resulted in an overall decrease in nutrient concentrations, an increase in light availability and a decrease in cyanobacteria abundance.
- Ecological tools for the management of cyanobacteria blooms in the Guadiana River watershed, Southwest IberiaPublication . Galvão, Helena M.; Reis, Margarida P.; Domingues, Rita B.; Caetano, Sandra; Mesquita, Sandra; Barbosa, Ana B.; Costa, Cristina; Vilchez, Carlos; Ribau Teixeira, MargaridaStrong water demand for irrigation, energy and drinking water production is responsible for an increasingly regulation of freshwater flow patterns and watersheds. In this context, the construction of dams allows water storage but seriously restricts freshwater flow downstream. Due to scarcity of freshwater resources, reservoir water management often promotes high hydraulic residence. This may cause strong impacts on biological components of aquatic ecosystems, influencing the development of cyanobacteria blooms and aggravating their harmful impacts.
- River damming leads to decreased phytoplankton biomass and disappearance of cyanobacteria bloomsPublication . Domingues, Rita B.; Barbosa, Ana B.; Galvão, Helena M.The large Alqueva dam was built in the early 2000s in the Guadiana River (southern Portugal) and has highly controlled the freshwater flowing into the Guadiana estuary, leading to significant changes in the natural hydrological regime. To evaluate the impacts of water restriction and flow regularization on estuarine phytoplankton and their environmental variables, sampling campaigns were conducted in the Guadiana estuary throughout a 14-year period, covering different phases related to the Alqueva dam construction. Significant alterations in phytoplankton and their environmental drivers were observed. In the post-filling period, river flow became more constant throughout the year and its natural seasonal variability, with maxima in the winter and minima in the summer, was greatly reduced, leading to higher river flows in the summer and lower in the winter, in relation to the pre-filling phase. Nutrient and light availability and, hence, phytoplankton dynamics, were greatly affected. Phytoplankton abundance and biomass decreased in the post-filling phase related to a decrease in diatoms and cyanobacteria. Since cyanobacteria blooms in the Guadiana are frequently dominated by toxic species, this constitutes an improvement in water quality. However, the overall decrease in phytoplankton biomass and, specifically, the decline in diatom biomass, will have major consequences for the higher trophic levels that depend on planktonic food.