Repository logo
 
Loading...
Profile Picture
Person

Martins, Rute Sofia Tavares

Search Results

Now showing 1 - 7 of 7
  • Vertebrate SLRP family evolution and the subfunctionalization of osteoglycin gene duplicates in teleost fish
    Publication . Costa, Rita; Brazona, Rute Sofia Tavares Martins; Capilla, E.; Anjos, Liliana; Power, Deborah
    Background Osteoglycin (OGN, a.k.a. mimecan) belongs to cluster III of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). In vertebrates OGN is a characteristic ECM protein of bone. In the present study we explore the evolution of SLRP III and OGN in teleosts that have a skeleton adapted to an aquatic environment. Results The SLRP gene family has been conserved since the separation of chondrichthyes and osteichthyes. Few gene duplicates of the SLRP III family exist even in the teleosts that experienced a specific whole genome duplication. One exception is ogn for which duplicate copies were identified in fish genomes. The ogn promoter sequence and in vitro mesenchymal stem cell (MSC) cultures suggest the duplicate ogn genes acquired divergent functions. In gilthead sea bream (Sparus aurata) ogn1 was up-regulated during osteoblast and myocyte differentiation in vitro, while ogn2 was severely down-regulated during bone-derived MSCs differentiation into adipocytes in vitro. Conclusions Overall, the phylogenetic analysis indicates that the SLRP III family in vertebrates has been under conservative evolutionary pressure. The retention of the ogn gene duplicates in teleosts was linked with the acquisition of different functions. The acquisition by OGN of functions other than that of a bone ECM protein occurred early in the vertebrate lineage.
  • Galanin and prolactin expression in relation to parental care in two sympatric cichlid species from Lake Tanganyika
    Publication . Cunha-Saraiva, Filipa; Martins, Rute; Power, Deborah; Balshine, Sigal; Schaedelin, Franziska C.
    Our understanding of the hormonal mechanisms underlying parental care mainly stems from research on species with uniparental care. Far less is known about the physiological changes underlying motherhood and fatherhood in biparental caring species. Here, using two biparental caring cichlid species (Neolamprologus caudopunctatus and Neolamprologus pulcher), we explored the relative gene-expression levels of two genes implicated in the control of parental care, galanin (gal) and prolactin (prl). We investigated whole brain gene expression levels in both, male and female caring parents, as well as in non-caring individuals of both species. Caring males had higher prl and gal mRNA levels compared to caring females in both fish species. Expression of gal was highest when young were mobile and the need for parental defense was greatest and gal was lowest during the more stationary egg tending phase in N. caudopunctatus. The onset of parenthood was associated with lower expression of prl and higher expression of gal in N. pulcher, but this pattern was not observed in N. caudopunctatus. Our study demonstrates that gal gene expression is correlated with changes in parental care in two biparental cichlid species and extends both knowledge and taxonomic coverage of the possible neurogenetic mechanisms underlying parental care.
  • PACAP system evolution and its role in melanophore function in teleost fish skin
    Publication . CR Cardoso, Joao; C. Félix, Rute; Martins, Rute; M., Trindade; G Fonseca, Vera; Fuentes, Xoan; Power, Deborah
    Pituitary adenylate cyclase-activating polypeptide (PACAP) administered to tilapia melanophores ex-vivo causes significant pigment aggregation and this is a newly identified function for this peptide in fish. The G-protein coupled receptors (GPCRs), adcyap1r1a (encoding Pac1a) and vipr2a (encoding Vpac2a), are the only receptors in melanophores with appreciable levels of expression and are significantly (p < 0.05) down-regulated in the absence of light. Vpac2a is activated exclusively by peptide histidine isoleucine (PHI), which suggests that Pac1a mediates the melanin aggregating effect of PACAP on melanophores. Paradoxically activation of Pac1a with PACAP caused a rise in cAMP, which in fish melanophores is associated with melanin dispersion. We hypothesise that the duplicate adcyap1ra and vipr2a genes in teleosts have acquired a specific role in skin and that the melanin aggregating effect of PACAP results from the interaction of Pac1a with Ramp that attenuates cAMP-dependent PKA activity and favours the Ca(2+)/Calmodulin dependent pathway.
  • Duplication of Dio3 genes in teleost fish and their divergent expression in skin during flatfish metamorphosis
    Publication . Alves, Ricardo; Cardoso, João CR; Harboe, T.; Martins, Rute; Manchado, M.; Norberg, B.; Power, Louise
    Deiodinase 3 (Dio3) plays an essential role during early development in vertebrates by controlling tissue thyroid hormone (TH) availability. The Atlantic halibut (Hippoglossus hippoglossus) possesses duplicate dio3 genes (dio3a and dio3b). Expression analysis indicates that dio3b levels change in abocular skin during metamorphosis and this suggests that this enzyme is associated with the divergent development of larval skin to the juvenile phenotype. In larvae exposed to MMI, a chemical that inhibits TH production, expression of dio3b in ocular skin is significantly up-regulated suggesting that THs normally modulate this genes expression during this developmental event. The molecular basis for divergent dio3a and dio3b expression and responsiveness to MMI treatment is explained by the multiple conserved TREs in the proximal promoter region of teleost dio3b and their absence from the promoter of dio3a. We propose that the divergent expression of dio3 in ocular and abocular skin during halibut metamorphosis contributes to the asymmetric pigment development in response to THs. (C) 2017 Elsevier Inc. All rights reserved.
  • Galanin isoforms by alternative splicing: structure, expression, and immunohistochemical location in the gonads of European sea bass
    Publication . Martins, Rute; Sousa, Carmen; Andrade, André; Molés, Gregorio; Zanuy, Silvia; Gómez, Ana; Canario, Adelino; Pinto, Patrícia
    Galanin (Gal) is a neuropeptide with multiple functions that is widely expressed in the central and peripheral nervous systems of vertebrates. Anatomical and functional evidence suggests a possible role in regulating reproduction in fishes. To test this possibility, we have isolated and characterized two gal alternative transcripts in European sea bass (Dicentrarchus labrax) that encode two prepropeptides, respectively of 29 (gal_MT853221) and 53 (gal_MT853222) amino acids. The two gal transcripts are highly expressed in brain, pituitary and gonads, and appear to be differentially regulated in males and females. In males, gal_MT853222 in the hypothalamus and gal_MT853221 in the pituitary were downregulated with the progression of spermatogenesis (stages I-III). Both transcripts are downregulated in testicles of 1-year (precocious) and 2-year spermiating males compared to immature fish of the same age. Gal peptides and receptors are expressed throughout ovarian development in the hypothalamic-pituitary-gonadal (HPG) axis of females. In the testis, immunoreactive Gal-29 and Gal-53 peptides were detected in blood vessels and Leydig cells during the spermatogenesis stages I-III but Gal immunostaining was barely undetected in more advanced stages. In the ovary, both peptides localized in interstitial cells and blood vessels and in theca cells surrounding the maturing oocytes. The immunolocalization of galanin in Leydig and theca cells suggests a possible role in steroid production regulation. The different pattern of gal expression and Gal localization in the testis and ovary may suggest the possibility that androgens and estrogens may also regulate Gal gene transcription and translation. Altogether, this study showed evidence for the possible involvement of locally produced Gal in gametogenesis and that its production is differentially regulated in male and female gonads.
  • Somatostatin 4 regulates growth and modulates gametogenesis in zebrafish
    Publication . Sui, Chenchao; Chen, Jie; Ma, Jing; Zhao, Wenting; Canario, Adelino V.M.; Martins, Rute S.T.
    Somatostatin (SST) plays important roles in growth and development. In teleost fishes six SST encoding genes (sst1 to sst6) have been identified although few studies have addressed their function. Here we aim to determine the function of the teleost specific sst4 in the zebrafish. A CRISPR/Cas9 sst4 zebrafish mutant with loss of function (sst4−/−) was produced which grew significantly faster and was heavier at the onset of gonadal maturation than the wild type (WT). Consistent with their faster growth, liver igf1, igf2a and igf2b expression was significantly upregulated in the sst4−/− fish compared to the WT. Histological examination of the ovaries and testis indicated that sst4−/− fish had slightly delayed testicular gametogenesis compared to the WT. Significantly lower expression of igf3, amh, insl3, hsd17b3, hsd11b2, hsd20b, cyp11b and cyp17 was consistently observed in the sst4−/− testis. In contrast, the ovaries had lower expression of igf1, igf2a and cyp19a1a but increased expression of igf2b and hsd20b. The gonadotrophin beta subunits (fshb and lhb) in the brain were downregulated indicating the brain-pituitary-gonadal axis was downregulated in the sst4−/− fish and suggesting that the steroid production is compromised in the maturing gonads. In addition, analysis of sst1 and sst3 mRNA levels in sst4−/− fish suggests a dosage compensation effect of sst1 in the brain and liver. Altogether, the results from the zebrafish sst4−/− line support the idea that sst4 is involved in the regulation of igf signalling, somatic growth and reproduction since steroidogenesis and gametogenesis at pubertal onset were compromised.
  • Somatostatin signalling coordinates energy metabolism allocation to reproduction in zebrafish
    Publication . Chen, Jie; Zhao, Wenting; Cao, Lei; Martins, Rute Sofia Tavares; Canario, Adelino
    BackgroundEnergy allocation between growth and reproduction determines puberty onset and fertility. In mammals, peripheral hormones such as leptin, insulin and ghrelin signal metabolic information to the higher centres controlling gonadotrophin-releasing hormone neurone activity. However, these observations could not be confirmed in lower vertebrates, suggesting that other factors may mediate the energetic trade-off between growth and reproduction. A bioinformatic and experimental study suggested co-regulation of the circadian clock, reproductive axis and growth-regulating genes in zebrafish. While loss-of-function of most of the identified co-regulated genes had no effect or only had mild effects on reproduction, no such information existed about the co-regulated somatostatin, well-known for its actions on growth and metabolism.ResultsWe show that somatostatin signalling is pivotal in regulating fecundity and metabolism. Knock-out of zebrafish somatostatin 1.1 (sst1.1) and somatostatin 1.2 (sst1.2) caused a 20-30% increase in embryonic primordial germ cells, and sst1.2-/- adults laid 40% more eggs than their wild-type siblings. The sst1.1-/- and sst1.2-/- mutants had divergent metabolic phenotypes: the former had 25% more pancreatic alpha-cells, were hyperglycaemic and glucose intolerant, and had increased adipocyte mass; the latter had 25% more pancreatic beta-cells, improved glucose clearance and reduced adipocyte mass.ConclusionsWe conclude that somatostatin signalling regulates energy metabolism and fecundity through anti-proliferative and modulatory actions on primordial germ cells, pancreatic insulin and glucagon cells and the hypothalamus. The ancient origin of the somatostatin system suggests it could act as a switch linking metabolism and reproduction across vertebrates. The results raise the possibility of applications in human and animal fertility.