Repository logo
 
Loading...
Project Logo
Research Project

Development of Microalgae-based novel high added-value products for the Cosmetic and Aquaculture industry

Funder

Organizational Unit

Authors

Publications

Understanding pseudo-albinism in sole (Solea senegalensis): a transcriptomics and metagenomics approach
Publication . Pinto, Patricia IS; Guerreiro, Claudia; Costa, Rita A.; Martinez-Blanch, Juan F.; Carballo, Carlos; Codoñer, Francisco M.; Manchado, Manuel; Power, Deborah
Pseudo-albinism is a pigmentation disorder observed in flatfish aquaculture with a complex, multi-factor aetiology. We tested the hypothesis that pigmentation abnormalities are an overt signal of more generalised modifications in tissue structure and function, using as a model the Senegalese sole and two important innate immune barriers, the skin and intestine, and their microbiomes. Stereological analyses in pseudo-albino sole revealed a significantly increased mucous cell number in skin (P < 0.001) and a significantly thicker muscle layer and lamina propria in gut (P < 0.001). RNA-seq transcriptome analysis of the skin and gut identified 573 differentially expressed transcripts (DETs, FDR < 0.05) between pseudo-albino and pigmented soles (one pool/tissue from 4 individuals/phenotype). DETs were mainly linked to pigment production, skin structure and regeneration and smooth muscle contraction. The microbiome (16 S rRNA analysis) was highly diverse in pigmented and pseudo-albino skin but in gut had low complexity and diverged between the two pigmentation phenotypes. Quantitative PCR revealed significantly lower loads of Mycoplasma (P < 0.05) and Vibrio bacteria (P < 0.01) in pseudo-albino compared to the control. The study revealed that pseudo-albinism in addition to pigmentation changes was associated with generalised changes in the skin and gut structure and a modification in the gut microbiome.
Phylogeny, expression patterns and regulation of DNA Methyltransferases in early development of the flatfish, Solea senegalensis
Publication . Firmino, Joana; Carballo, Carlos; Armesto, Paula; Campinho, Marco António; Power, Deborah M.; Manchado, Manuel
Background: The identification of DNA methyltransferases (Dnmt) expression patterns during development and their regulation is important to understand the epigenetic mechanisms that modulate larval plasticity in marine fish. In this study, dnmt1 and dnmt3 paralogs were identified in the flatfish Solea senegalensis and expression patterns in early developmental stages and juveniles were determined. Additionally, the regulation of Dnmt transcription by a specific inhibitor (5-aza-2 '-deoxycytidine) and temperature was evaluated. Results: Five paralog genes of dnmt3, namely dnmt3aa, dnmt3ab, dnmt3ba, dnmt3bb. 1 and dnmt3bb. 2 and one gene for dnmt1 were identified. Phylogenetic analysis revealed that the dnmt gene family was highly conserved in teleosts and three fish-specific genes, dnmt3aa, dnmt3ba and dnmt3bb. 2 have evolved. The spatio-temporal expression patterns of four dnmts (dnmt1, dnmt3aa, dnmt3ab and dnmt3bb. 1) were different in early larval stages although all of them reduced expression with the age and were detected in neural organs and dnmt3aa appeared specific to somites. In juveniles, the four dnmt genes were expressed in brain and hematopoietic tissues such as kidney, spleen and gills. Treatment of sole embryos with 5-aza-2 '-deoxycytidine down-regulated dntm1 and up-regulated dntm3aa. Moreover, in lecithotrophic larval stages, dnmt3aa and dnmt3ab were temperature sensitive and their expression was higher in larvae incubated at 16 degrees C relative to 20 degrees C. Conclusion: Five dnmt3 and one dnmt1 paralog were identified in sole and their distinct developmental and tissue-specific expression patterns indicate that they may have different roles during development. The inhibitor 5-aza-2 '-deoxycytidine modified the transcript abundance of dntm1 and dntm3aa in embryos, which suggests that a regulatory feedback mechanism exists for these genes. The impact of thermal regime on expression levels of dnmt3aa and dnmt3ab in lecithotrophic larval stages suggests that these paralogs might be involved in thermal programing.
Deciphering the role of cartilage protein 1 in human dermal fibroblasts: a transcriptomic approach
Publication . Letsiou, Sophia; Manchado, Manuel; Zografaki, Mariela; Marka, Sofia; L, Anjos; Skliros, Dimitrios; Martínez-Blanch, Juan F.; Flemetakis, E.; Power, Deborah
Cartilage acidic protein 1A (hCRTAC1-A) is an extracellular matrix protein (ECM) of human hard and soft tissue that is associated with matrix disorders. The central role of fibroblasts in tissue integrity and ECM health made primary human dermal fibroblasts (NHDF) the model for the present study, which aimed to provide new insight into the molecular function of hCRTAC1-A. Specifically, we explored the differential expression patterns of specific genes associated with the presence of hCRTAC1-A by RNA-seq and RT-qPCR analysis. Functional enrichment analysis demonstrated, for the very first time, that hCRTAC1-A is involved in extracellular matrix organization and development, through its regulatory effect on asporin, decorin, and complement activity, in cell proliferation, regeneration, wound healing, and collagen degradation. This work provides a better understanding of putative hCRTAC1-A actions in human fibroblasts and a fundamental insight into its function in tissue biology.
Microalgal extracts induce larval programming and modify growth and the immune response to bioactive treatments and LCDV in Senegalese sole post-larvae
Publication . Carballo, Carlos; Mateus, Ana; Maya, Claudia; Mantecon, Lalia; Power, Deborah; Manchado, Manuel
Immunostimulants are key molecules in aquaculture since they heighten defensive responses and protection against pathogens. The present study investigated the treatment of Senegalese sole larvae with a whole-cell crude extract of the microalgae Nannochloropsis gaditana (Nanno) and programming of growth and the immune system. Larvae at hatch were treated with the Nanno extracts for 2 h and thereafter were cultivated for 32 days posthatch (dph) in parallel with an untreated control group (CN). Dry weight and length at 21 days post-hatch (dph) were higher in post-larvae of the Nanno than CN group. These differences in weight were later confirmed at 32 dph. To evaluate changes in the immune response associated with Nanno-programming treatments, the Nanno and CN post-larvae were supplied with two bioactive compounds yeast beta-glucan (Y) and a microalga extract from the diatom Phaeodactylum tricornutum (MAe). The bioactive treatments were administrated to the treatment groups through the live prey (artemia metanauplii, 200 artemia mL(-1)) enriched for 30 min with MAe or Y (at 2 mg mL(-1) SW) or untreated prey in the case of the negative control (SW). The effect of the treatments was assessed by monitoring gene expression, enzyme activity and mortality over 48 h. The postlarvae sole supplied with the bioactive compounds Y and MAe had increased mortality at 48 h compared to the SW group. Moreover, mortality was higher in Nanno-programmed than CN post-larvae. Lysozyme and total antiprotease enzymatic activities at 6 and 24 h after the start of the trial were significantly higher in the Nanno and MAe supplied post-larvae compared to their corresponding control (CN and SW, respectively). Immune gene transcripts revealed that il1b, cxc10 and mx mRNAs were significantly different between Nanno and CN postlarvae at 6 and 24 h. Moreover, the expression of il1b, tnfa, cxc10, irf3, irf7 and mx was modified by bioactive treatments but with temporal differences. At 48 h after bioactive treatments, Y and SW post-larvae were challenged with the lymphocystis disease virus (LCDV). No difference existed in viral copy number between programming or bioactive treatment groups at 3, 6 and 24 h after LCDV challenge although the total number of copies reduced with time. Gene expression profiles in the LCDV-challenged group indicated that post-larvae triggered a wide defensive response compared to SWC 24 h after challenge, which was modulated by programming and bioactive compound treatments. Cluster analysis of expressed genes separated the SW and Y groups indicating long-lasting effects of yeast beta-glucan treatment in larvae. A noteworthy interaction between Nanno-programming and Y-treatment on the regulation of antiviral genes was observed. Overall, the data demonstrate the capacity of microalgal crude extracts to modify sole larval plasticity with long-term effects on larval growth and the immune responses.
Yeast β-glucans and microalgal extracts modulate the immune response and gut microbiome in Senegalese sole (Solea senegalensis)
Publication . Carballo, Carlos; Pinto, Patricia IS; Mateus, Ana; Berbel, Concha; Guerreiro, Claudia; Martinez-Blanch, Juan F.; Codoñer, Francisco M.; Mantecon, Lalia; Power, Deborah; Manchado, Manuel
One bottleneck to sustainability of fish aquaculture is the control of infectious diseases. Current trends include the preventive application of immunostimulants and prebiotics such as polysaccharides. The present study investigated how yeast β-glucan (Y), microalgal polysaccharide-enriched extracts (MAe) and whole Phaeodactylum tricornutum cells (MA) modulated the gut microbiome and stimulated the immune system in Senegalese sole (Solea senegalensis) when administered by oral intubation. Blood, intestine and spleen samples were taken at 3 h, 24 h, 48 h and 7 days after treatment. The short-term response (within 48 h after treatment) consisted of up-regulation of il1b and irf7 expression in the gut of the Y treated group. In contrast, administration of MAe decreased expression of tnfa and the chemokine cxc10 in the gut and spleen. Both treatments down-regulated the expression of irf3 with respect to the control group. Lysozyme activity in plasma decreased at 48 h only in the MAe-treated soles. Medium-term response consisted of the up-regulation of clec and irf7 expression in the gut of the Y, MAe and MA groups and of il1b mRNAs in the spleen of the MA group compared to the control group. Microbiome analysis using 16S rDNA gene sequencing indicated that the intestine microbiome was dominated by bacteria of the Vibrio genus (>95%). All the treatments decreased the relative proportion of Vibrio in the microbiome and Y and MAe decreased and MA increased diversity. Quantitative PCR confirmed the load of bacteria of the Vibrio genus was significantly decreased and this was most pronounced in Y treated fish. These data indicate that orally administrated insoluble yeast β-glucans acted locally in the gut modulating the immune response and controlling the Vibrio abundance. In contrast, the MAe slightly reduced the Vibrio load in the intestine and caused a transient systemic anti-inflammatory response. The results indicate that these polysaccharides are a promising source of prebiotics for the sole aquaculture industry.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

European Commission

Funding programme

H2020

Funding Award Number

691102

ID